The Regression class simplifies regression analysis by providing a convenient and flexible approach for model training, evaluation, and hyperparameter tuning.The Classifier class streamlines classification tasks by offering a well-organized framework for model selection, hyperparameter tuning,
Project description
Project Title
Simplifying Regression and Classification Modeling
Guide
Installation setup
pip install AlgoMaster
Classfication model
-
Initialize the model
`Classifier=AlgoMaster.Classifier(X,Y,test_size=0.2,random_state=20)`
-
Train the model and predict the results in table format
`Classifier.model_training()`
-
Ensemble technique
`Classifier.ensemble_prediction(No. of models)`
-
Single Training
To predict unseen data
`data=[1,2,3,4,5,6,7,8,9] Classifier.logistic_test(data) Classifier.KNeighbors_test(data) Classifier.GaussianNB_test(data) Classifier.Bagging_test(data) Classifier.ExtraTrees_test(data) Classifier.RandomForest_test(data) Classifier.DecisionTree_test(data) Classifier.AdaBoost_test(data) Classifier.GradientBoosting_test(data) Classifier.XGBoost_test(data) Classifier.SGD_test(data) Classifier.SVC_test(data) Classifier.Ridge_test(data) Classifier.BernoulliNB_test(data)`
-
Hyperparameter Turning
To find the best parameters for the model
`Classifier.hyperparameter_tuning()`
-
Single Hyperparameter Turning
To find the best parameters for the model
`Classifier.logistic_hyperparameter() Classifier.KNeighbors_hyperparameter() Classifier.GaussianNB_hyperparameter() Classifier.Bagging_hyperparameter() Classifier.ExtraTrees_hyperparameter() Classifier.RandomForest_hyperparameter() Classifier.DecisionTree_hyperparameter() Classifier.AdaBoost_hyperparameter() Classifier.GradientBoosting_hyperparameter() Classifier.XGBoost_hyperparameter() Classifier.SGD_hyperparameter() Classifier.SVC_hyperparameter() Classifier.Ridge_hyperparameter() Classifier.BernoulliNB_hyperparameter()`
Regression model
-
Initialize the model
`Regressor=AlgoMaster.Regressor(X,Y,test_size=0.2,random_state=20)`
-
Train the model and predict the results in table format
`Regressor.model_training()`
-
Ensemble technique
`Regressor.ensemble_prediction(No. of models)`
-
Single Training
`data=[1,2,3,4,5,6,7,8,9] Regressor.LinearRegression_test(data) Regressor.KNeighbors_test(data) Regressor.Bagging_test(data) Regressor.ExtraTrees_test(data) Regressor.RandomForest_test(data) Regressor.DecisionTree_test(data) Regressor.AdaBoost_test(data) Regressor.GradientBoosting_test(data) Regressor.XGBoost_test(data) Regressor.TheilSen_test(data) Regressor.SVR_test(data) Regressor.Ridge_test(data) Regressor.RANSAC_test(data) Regressor.ARD_test(data) Regressor.BayesianRidge_test(data) Regressor.HuberRegressor_test(data) Regressor.Lasso_test(data) Regressor.ElasticNet_test(data)`
-
Hyperparameter Turning
To find the best parameters for the model
`Regressor.hyperparameter_tuning()`
-
Single Hyperparameter Turning
To find the best parameters for the model
`Regressor.KNeighbors_hyperparameter() Regressor.Bagging_hyperparameter() Regressor.ExtraTrees_hyperparameter() Regressor.RandomForest_hyperparameter() Regressor.DecisionTree_hyperparameter() Regressor.AdaBoost_hyperparameter() Regressor.GradientBoosting_hyperparameter() Regressor.XGBoost_hyperparameter() Regressor.TheilSen_hyperparameter() <!-- Regressor.SVR_hyperparameter() --> Regressor.Ridge_hyperparameter() Regressor.RANSAC_hyperparameter() Regressor.ARD_hyperparameter() Regressor.BayesianRidge_hyperparameter() Regressor.Lasso_hyperparameter() Regressor.ElasticNet_hyperparameter()`
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file AlgoMaster-0.1.3.tar.gz
.
File metadata
- Download URL: AlgoMaster-0.1.3.tar.gz
- Upload date:
- Size: 11.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 849b04883816083851fd7564c9f1ae3ca3e86b01a99a46090849b7c0437501a6 |
|
MD5 | 78de4c2157cb3f8dc9341d66f745e8fb |
|
BLAKE2b-256 | e111b460960de8c90e19e917911363f1fb857c0c826f72bd411b0646a7d46984 |
File details
Details for the file AlgoMaster-0.1.3-py3-none-any.whl
.
File metadata
- Download URL: AlgoMaster-0.1.3-py3-none-any.whl
- Upload date:
- Size: 11.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2eaa02d2ef59494befd6850ef0a6e11a34b1cfc94f16a2b9eee6dff4c9824eda |
|
MD5 | 006fc510e8f484371ffc578ab6c35201 |
|
BLAKE2b-256 | e4a92e54528b4a30fa89ea17291a87e6d183179cd865ac5784574276b5e7efc9 |