Skip to main content

Algora Labs Python SDK

Project description

Algora Labs Python SDK

Algora Labs is an IDE for Quants. We provide users financial data, a research environment and visualization tools to efficiently translate research ideas into actionable insights for trading. The algora-sdk allows users to programmatically access datasets and resources on our platform.

Installation

When running locally, set the following environment variables for your username and password for Algora Labs. When running code on our platform, there is no need to set these environment variables.

ALGORA_USER=username
ALGORA_PWD=password

Examples

These examples can be run on our platform.

Rolling Performance

import pandas as pd

from algoralabs.data.iex.stocks import historical_prices


def calculate_returns(df: pd.DataFrame, column: str = 'high', shift: int = 1):
    return df[column].diff() / df[column].shift(shift)


def main(symbol):
    shift = 30

    df = historical_prices(symbol, range="10y")
    df['rolling_return'] = calculate_returns(df, shift=shift) * 100

    df = df.iloc[shift:]

    return df


if __name__ == '__main__':
    print(main("AAPL"))

Swap Data Repository

Note: You must have privileges to access this SDR data

from algoralabs.data.sdr.query import commodity, get_by_date, get_distinct_in_field
from algoralabs.data.sdr import AssetClass, Repository, DataFilter, DateRange, FieldFilter


def main():
    print("Querying Commodity dataset without filters")
    print(commodity())

    print("Querying Commodity dataset by date and repository")
    print(get_by_date(asset_class=AssetClass.COMMODITY, date="2022-01-01", repos=[Repository.CME]))

    print("Getting distinct values in `leg_1_asset` field. These values can be used in the FieldFilter")
    print(get_distinct_in_field(asset_class=AssetClass.COMMODITY, field="leg_1_asset"))

    commodity_filter = DataFilter(
        # data_range is optional, can be None
        date_range=DateRange(
            start_date="2022-01-01",
            end_date="2022-01-01",
            enabled=False  # set to True to enable
        ),
        filters=[
            FieldFilter(
                field="repository",
                # operator can be "NOT_IN" or "IN" or "NOT_EQUAL" or "EQUAL" or "GTE" or "GT" or "LTE" or "LT"
                operator="IN",
                selected_values=["CME", "DTCC"]
            ),
            FieldFilter(
                field="sector",
                operator="IN",
                selected_values=["Energy"]
            )
        ]
    )

    print("Querying Commodity dataset with filters")
    commodity_filter_df = commodity(commodity_filter)

    print(commodity_filter_df)


if __name__ == '__main__':
    main()

Contact

Please Contact Us if you have any questions!

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

algora-sdk-1.1.40.tar.gz (21.8 kB view details)

Uploaded Source

Built Distribution

algora_sdk-1.1.40-py3-none-any.whl (36.7 kB view details)

Uploaded Python 3

File details

Details for the file algora-sdk-1.1.40.tar.gz.

File metadata

  • Download URL: algora-sdk-1.1.40.tar.gz
  • Upload date:
  • Size: 21.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.5

File hashes

Hashes for algora-sdk-1.1.40.tar.gz
Algorithm Hash digest
SHA256 b1a0fed45726316eccdb6fb4607c6b9d0c5296ce1d3fb7bdddbe20f6c17f3b1e
MD5 5087ed748f2ebebd075049f63722a791
BLAKE2b-256 9329de2597296ddfcaa613187afc323421065d35541c1523c68d54e350b9c8fc

See more details on using hashes here.

File details

Details for the file algora_sdk-1.1.40-py3-none-any.whl.

File metadata

  • Download URL: algora_sdk-1.1.40-py3-none-any.whl
  • Upload date:
  • Size: 36.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.5

File hashes

Hashes for algora_sdk-1.1.40-py3-none-any.whl
Algorithm Hash digest
SHA256 9d93d5246cb57664d7d6e4ce432aac5897ede9928a5173aae2daa3534c171da1
MD5 780e300efb8b1ebd2801c355171022d5
BLAKE2b-256 82e2bb2cc77962afcc7347b1a9cc927185b8e5a17e90b7c692913d06e00699cf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page