Skip to main content

Algora Labs Python SDK

Project description

Algora Labs Python SDK

Algora Labs is an IDE for Quants. We provide users financial data, a research environment and visualization tools to efficiently translate research ideas into actionable insights for trading. The algora-sdk allows users to programmatically access datasets and resources on our platform.

Installation

When running locally, set the following environment variables for your username and password for Algora Labs. When running code on our platform, there is no need to set these environment variables.

ALGORA_USER=username
ALGORA_PWD=password

Examples

These examples can be run on our platform.

Rolling Performance

import pandas as pd

from algoralabs.data.iex.stocks import historical_prices


def calculate_returns(df: pd.DataFrame, column: str = 'high', shift: int = 1):
    return df[column].diff() / df[column].shift(shift)


def main(symbol):
    shift = 30

    df = historical_prices(symbol, range="10y")
    df['rolling_return'] = calculate_returns(df, shift=shift) * 100

    df = df.iloc[shift:]

    return df


if __name__ == '__main__':
    print(main("AAPL"))

Swap Data Repository

Note: You must have privileges to access this SDR data

from algoralabs.data.sdr.query import commodity, get_by_date, get_distinct_in_field
from algoralabs.data.sdr import AssetClass, Repository, DataFilter, DateRange, FieldFilter


def main():
    print("Querying Commodity dataset without filters")
    print(commodity())

    print("Querying Commodity dataset by date and repository")
    print(get_by_date(asset_class=AssetClass.COMMODITY, date="2022-01-01", repos=[Repository.CME]))

    print("Getting distinct values in `leg_1_asset` field. These values can be used in the FieldFilter")
    print(get_distinct_in_field(asset_class=AssetClass.COMMODITY, field="leg_1_asset"))

    commodity_filter = DataFilter(
        # data_range is optional, can be None
        date_range=DateRange(
            start_date="2022-01-01",
            end_date="2022-01-01",
            enabled=False  # set to True to enable
        ),
        filters=[
            FieldFilter(
                field="repository",
                # operator can be "NOT_IN" or "IN" or "NOT_EQUAL" or "EQUAL" or "GTE" or "GT" or "LTE" or "LT"
                operator="IN",
                selected_values=["CME", "DTCC"]
            ),
            FieldFilter(
                field="sector",
                operator="IN",
                selected_values=["Energy"]
            )
        ]
    )

    print("Querying Commodity dataset with filters")
    commodity_filter_df = commodity(commodity_filter)

    print(commodity_filter_df)


if __name__ == '__main__':
    main()

Contact

Please Contact Us if you have any questions!

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

algora-sdk-1.1.46.tar.gz (22.5 kB view details)

Uploaded Source

Built Distribution

algora_sdk-1.1.46-py3-none-any.whl (38.0 kB view details)

Uploaded Python 3

File details

Details for the file algora-sdk-1.1.46.tar.gz.

File metadata

  • Download URL: algora-sdk-1.1.46.tar.gz
  • Upload date:
  • Size: 22.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.5

File hashes

Hashes for algora-sdk-1.1.46.tar.gz
Algorithm Hash digest
SHA256 26f3ee2fcb1a760806c4e28f1747abfcf775a54ece474079b0e8be2038c81a28
MD5 2b26a3e42af0168298d70e8e0e94febb
BLAKE2b-256 40e50425dbdecf347b89277f53556612b86e4ef5933537e4156d5c122ccdcadc

See more details on using hashes here.

File details

Details for the file algora_sdk-1.1.46-py3-none-any.whl.

File metadata

  • Download URL: algora_sdk-1.1.46-py3-none-any.whl
  • Upload date:
  • Size: 38.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.5

File hashes

Hashes for algora_sdk-1.1.46-py3-none-any.whl
Algorithm Hash digest
SHA256 034db78eb97bb7ed0ba051893f635252201a9bea8e52f05c8c71fe3a09f5fd43
MD5 b0a7a05cea470675cd382dc683d7fbec
BLAKE2b-256 56633e2b2e3b7dff519d11a6139af62122aec93bec85c5818c6298cadb255551

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page