Skip to main content

Algora Labs Python SDK

Project description

Algora Labs Python SDK

Algora Labs is an IDE for Quants. We provide users financial data, a research environment and visualization tools to efficiently translate research ideas into actionable insights for trading. The algora-sdk allows users to programmatically access datasets and resources on our platform.

Installation

When running locally, set the following environment variables for your username and password for Algora Labs. When running code on our platform, there is no need to set these environment variables.

ALGORA_USER=username
ALGORA_PWD=password

Examples

These examples can be run on our platform.

Rolling Performance

import pandas as pd

from algoralabs.data.iex.stocks import historical_prices


def calculate_returns(df: pd.DataFrame, column: str = 'high', shift: int = 1):
    return df[column].diff() / df[column].shift(shift)


def main(symbol):
    shift = 30

    df = historical_prices(symbol, range="10y")
    df['rolling_return'] = calculate_returns(df, shift=shift) * 100

    df = df.iloc[shift:]

    return df


if __name__ == '__main__':
    print(main("AAPL"))

Swap Data Repository

Note: You must have privileges to access this SDR data

from algoralabs.data.sdr.query import commodity, get_by_date, get_distinct_in_field
from algoralabs.data.sdr import AssetClass, Repository, DataFilter, DateRange, FieldFilter


def main():
    print("Querying Commodity dataset without filters")
    print(commodity())

    print("Querying Commodity dataset by date and repository")
    print(get_by_date(asset_class=AssetClass.COMMODITY, date="2022-01-01", repos=[Repository.CME]))

    print("Getting distinct values in `leg_1_asset` field. These values can be used in the FieldFilter")
    print(get_distinct_in_field(asset_class=AssetClass.COMMODITY, field="leg_1_asset"))

    commodity_filter = DataFilter(
        # data_range is optional, can be None
        date_range=DateRange(
            start_date="2022-01-01",
            end_date="2022-01-01",
            enabled=False  # set to True to enable
        ),
        filters=[
            FieldFilter(
                field="repository",
                # operator can be "NOT_IN" or "IN" or "NOT_EQUAL" or "EQUAL" or "GTE" or "GT" or "LTE" or "LT"
                operator="IN",
                selected_values=["CME", "DTCC"]
            ),
            FieldFilter(
                field="sector",
                operator="IN",
                selected_values=["Energy"]
            )
        ]
    )

    print("Querying Commodity dataset with filters")
    commodity_filter_df = commodity(commodity_filter)

    print(commodity_filter_df)


if __name__ == '__main__':
    main()

Contact

Please Contact Us if you have any questions!

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

algora-sdk-1.1.47.tar.gz (22.5 kB view details)

Uploaded Source

Built Distribution

algora_sdk-1.1.47-py3-none-any.whl (38.0 kB view details)

Uploaded Python 3

File details

Details for the file algora-sdk-1.1.47.tar.gz.

File metadata

  • Download URL: algora-sdk-1.1.47.tar.gz
  • Upload date:
  • Size: 22.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.5

File hashes

Hashes for algora-sdk-1.1.47.tar.gz
Algorithm Hash digest
SHA256 7bc21329e8d41980069c6811a48aad6c9c26368ed6d6374ab98dd95f00e00094
MD5 d1debf1e61574b5fcc3010ae3bf1a522
BLAKE2b-256 434fed772b307db731ed523c42264be90a1a1333d45332595d0d1ff5827785ed

See more details on using hashes here.

File details

Details for the file algora_sdk-1.1.47-py3-none-any.whl.

File metadata

  • Download URL: algora_sdk-1.1.47-py3-none-any.whl
  • Upload date:
  • Size: 38.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.5

File hashes

Hashes for algora_sdk-1.1.47-py3-none-any.whl
Algorithm Hash digest
SHA256 249c65d35f7b2c234554d1e59de61e0de08a3c8cb044adda9dae2bf65ada1d87
MD5 df1954deb26d0a130ea650b016045e6a
BLAKE2b-256 fc9c8ca6bfd3b3f56db38b5d67e0d08601f057836bd3604e93138ebd7fd09bb9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page