Skip to main content

Algora Labs Python SDK

Project description

Algora Labs Python SDK

Algora Labs is an IDE for Quants. We provide users financial data, a research environment and visualization tools to efficiently translate research ideas into actionable insights for trading. The algora-sdk allows users to programmatically access datasets and resources on our platform.

Installation

When running locally, set the following environment variables for your username and password for Algora Labs. When running code on our platform, there is no need to set these environment variables.

ALGORA_USER=username
ALGORA_PWD=password

Examples

These examples can be run on our platform.

Rolling Performance

import pandas as pd

from algoralabs.data.iex.stocks import historical_prices


def calculate_returns(df: pd.DataFrame, column: str = 'high', shift: int = 1):
    return df[column].diff() / df[column].shift(shift)


def main(symbol):
    shift = 30

    df = historical_prices(symbol, range="10y")
    df['rolling_return'] = calculate_returns(df, shift=shift) * 100

    df = df.iloc[shift:]

    return df


if __name__ == '__main__':
    print(main("AAPL"))

Swap Data Repository

Note: You must have privileges to access this SDR data

from algoralabs.data.sdr.query import commodity, get_by_date, get_distinct_in_field
from algoralabs.data.sdr import AssetClass, Repository, DataFilter, DateRange, FieldFilter


def main():
    print("Querying Commodity dataset without filters")
    print(commodity())

    print("Querying Commodity dataset by date and repository")
    print(get_by_date(asset_class=AssetClass.COMMODITY, date="2022-01-01", repos=[Repository.CME]))

    print("Getting distinct values in `leg_1_asset` field. These values can be used in the FieldFilter")
    print(get_distinct_in_field(asset_class=AssetClass.COMMODITY, field="leg_1_asset"))

    commodity_filter = DataFilter(
        # data_range is optional, can be None
        date_range=DateRange(
            start_date="2022-01-01",
            end_date="2022-01-01",
            enabled=False  # set to True to enable
        ),
        filters=[
            FieldFilter(
                field="repository",
                # operator can be "NOT_IN" or "IN" or "NOT_EQUAL" or "EQUAL" or "GTE" or "GT" or "LTE" or "LT"
                operator="IN",
                selected_values=["CME", "DTCC"]
            ),
            FieldFilter(
                field="sector",
                operator="IN",
                selected_values=["Energy"]
            )
        ]
    )

    print("Querying Commodity dataset with filters")
    commodity_filter_df = commodity(commodity_filter)

    print(commodity_filter_df)


if __name__ == '__main__':
    main()

Contact

Please Contact Us if you have any questions!

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

algora-sdk-1.1.49.tar.gz (22.4 kB view details)

Uploaded Source

Built Distribution

algora_sdk-1.1.49-py3-none-any.whl (37.9 kB view details)

Uploaded Python 3

File details

Details for the file algora-sdk-1.1.49.tar.gz.

File metadata

  • Download URL: algora-sdk-1.1.49.tar.gz
  • Upload date:
  • Size: 22.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.5

File hashes

Hashes for algora-sdk-1.1.49.tar.gz
Algorithm Hash digest
SHA256 8f644215c47c11cea21ad54c0d1092b60d1c0876eadaa6d8f34e61f4a5349c30
MD5 e2b8ea7a560d698f0e40ee50d1a16853
BLAKE2b-256 de8c7f4a28651509c6aaef18fee32390dcd6fb35f9bc5a6d44c3b90eda1105d2

See more details on using hashes here.

File details

Details for the file algora_sdk-1.1.49-py3-none-any.whl.

File metadata

  • Download URL: algora_sdk-1.1.49-py3-none-any.whl
  • Upload date:
  • Size: 37.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.5

File hashes

Hashes for algora_sdk-1.1.49-py3-none-any.whl
Algorithm Hash digest
SHA256 730a93602f813bac3df40020a39171a26fd6157162066e0ef040227d226118e9
MD5 a2db522ae5ce8bbb3425fe3f7cace34e
BLAKE2b-256 cfdab8f631eb6f49a7130bd3fd6bda082ad0018e2e65df6e51a92bfa582a456e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page