验证算法公平性与数据集性质
Project description
# 验证算法公平性与完整性 # 开始
# 传入pandas dateframe作为数据集 dataset = Analyse(pandas_dataframe)
# 验证完整性 result = Analyse.completeness(col_name) # col_name 数据列名,返回有多少空值
# 验证公平性 dataset.new_test # 将pandas_dataframe中的敏感属性所在列随机打乱,重新赋值,然后再进行实验
# 查看数据分布 dataset.dis_analyse(‘x’, ‘y’) # 输出y相对于x的分布图像
# 比较两次实验结果差异 dataset.compare(x, y) # 输入两次结果x, y(二者均为torch向量),比较KL散度,越大说明相差越大
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file algorithm_analyse-0.1.3.tar.gz
.
File metadata
- Download URL: algorithm_analyse-0.1.3.tar.gz
- Upload date:
- Size: 2.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.0 CPython/3.8.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 220a9829587722226de136d066b4097dcc060d080dc29bfa144d29b1f6827b21 |
|
MD5 | 10eedb2c40242cdf4c77dac639415b4a |
|
BLAKE2b-256 | 46ef54c4503b31ae4d47eafccf6aae1e96921be5f22490dbd236f68110d5be74 |