Skip to main content

Classic computer science algorithms in Python

Project description

https://github.com/algos-all/algos-py/actions/workflows/python-app.yml/badge.svg https://ci.appveyor.com/api/projects/status/j5ireye9mly39f9m/branch/main?svg=true https://coveralls.io/repos/github/algos-all/algos-py/badge.svg?branch=main https://img.shields.io/codecov/c/github/algos-all/algos-py/main.svg https://pyup.io/repos/github/algos-all/algos-py/shield.svg

https://img.shields.io/pypi/format/algos-py.svg https://img.shields.io/pypi/v/algos-py.svg https://img.shields.io/github/license/algos-all/algos-py.svg

What is algos-py?

This package contains implementations of some classic computer science algorithms. My main goal is to understand these algorithms and the best way to do that is to implement them myself.

Along the way I practice test driven development (with pytest), continuous integration (with travis and appveyor), coverage tracking (with coveralls and codecov), version control (with git, github and gitlab), documentation (with sphinx and readthedocs) and a lot more.

How to test?

To run all of the unit-tests:

$ pytest -n 2

To run unit-tests for a specific module:

$ pytest ./tests/test_heap.py

To run all the unit-tests and produce a coverage report:

$ pytest -n 2 --cov=src

Where to find?

Primary repository:

https://github.com/algos-all/algos-py

Secondary (mirror) repository:

https://gitlab.com/alisianoi/algos-py

Release procedure:

$ # change version in setup.py
$ git add setup.py
$ git commit -m "Bump version to 1.0.0"
$ git tag v1.0.0
$ git push github main && git push github --tags
$ git push gitlab main && git push gitlab --tags
$ pip install --upgrade wheel
$ python setup.py bdist_wheel
$ pip install --upgrade twine
$ twine check ./dist/algos_py-1.0.0-py3-none-any.whl
$ twine upload ./dist/algos_py-1.0.0-py3-none-any.whl

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

algos_py-0.5.1-py3-none-any.whl (37.1 kB view details)

Uploaded Python 3

File details

Details for the file algos_py-0.5.1-py3-none-any.whl.

File metadata

  • Download URL: algos_py-0.5.1-py3-none-any.whl
  • Upload date:
  • Size: 37.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.5

File hashes

Hashes for algos_py-0.5.1-py3-none-any.whl
Algorithm Hash digest
SHA256 b909ed3d6c5a1d8fa9f25d7d250dc282057f044a369e834a9edd1486d65026c2
MD5 beda2e9a25ce5ae8eace3bc46b3bf4e8
BLAKE2b-256 e56515bd453ae936f233ff25fe2ab093cff930db3687d503e1a88023773e1f76

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page