Skip to main content

Alibaba Cloud PAI Python SDK

Project description

Alibaba PAI Python SDK

AliPAI Python SDK is provided by PAI team of Alibaba computing platform. It provides convenience for users to access PAI service in Alibaba Cloud.

In current, PAI SDK supports PAIFlow(ML Pipeline Service of PAI) service, other PAI services, such as EAS(Elastic Algorithm Service) and Blade will be included soon.

Installation

To install the PAI sdk, use the below command in terminal.

python -m pip install alipai

Usage

Setup default PAI session

Before use PAI service via SDK, developer should initialize the default PAI session by providing credential and region_id of service.

Pipeline service of PAI is currently provided in cn-shanghai region only.

from pai.core.session import setup_default_session

session = setup_default_session(access_key_id="your_access_key", access_key_secret="your_access_secret", region_id="your_region_id")

Access Pipeline Service

Use PipelineTemplate

PipelineTemplate instance includes the definition of "Workflow" use in PAI pipeline service. It could be fetched from remote PAI service or constructed from local Pipeline/Component.

Saved pipeline template has unique pipeline_id which is generated by pipeline service. Remote pipeline template could be fetched using identifier-provider-version or pipeline_id.

PAI provides a list of public pipeline templates which could be used as workflow template to run or to build pipeline. These templates are accessible by the specific provider pai.common.ProviderAlibabaPAI in PipelineTemplate.list.

from pai.pipeline import PipelineTemplate
from pai.common import ProviderAlibabaPAI

# search PipelineTemplate which provide by `PAI` and include `xflow` in identifier.
template = next(PipelineTemplate.list(identifie="xflow", provider=ProviderAlibabaPAI))

# view template inputs/outputs.
template
template.inputs
template.outputs

After submitting run job, users are able to inspect the detailed workflow DAG, execution log and outputs of the pipeline by visiting the job detail URL printed in console.

from pai.common import ProviderAlibabaPAI
from pai.pipeline import PipelineTemplate

# Get specific template by Identifier-Provider-Version
template = PipelineTemplate.get_by_identifier(identifier="split-xflow-maxCompute",
    provider=ProviderAlibabaPAI, version="v1")

xflow_execution = {
    "odpsInfoFile": "/share/base/odpsInfo.ini",
    "endpoint": "http://service.cn-shanghai.maxcompute.aliyun.com/api",
    "logViewHost": "http://logview.odps.aliyun.com",
    "odpsProject": "your_odps_project",
}

# run pipeline use provide arguments.
job = template.run(job_name="demo-split-job", arguments={
    "inputArtifact": "odps://pai_online_project/tables/mnist_data",
    "execution": xflow_execution, "fraction": 0.7}, wait=True)
job.get_outputs()

Build runnable and reusable pipeline

PAI Pipeline Service supports nested user-defined workflow. Composite pipeline is runnable by providing required arguments. Saved pipeline template could be used as a step to build a new pipeline.

def create_composite_pipeline():
    # Definite the inputs parameters in pipeline
    execution_input = PipelineParameter(name="execution", typ=dict)
    cols_to_double_input = PipelineParameter(name="cols_to_double")

    table_input = PipelineArtifact(name="data_source", metadata=ArtifactMetadata(
            data_type=ArtifactDataType.DataSet,
            location_type=ArtifactLocationType.MaxComputeTable))

    # Pipeline step from remote PAI service.
    type_transform_step = PipelineStep(
        identifier="type-transform-xflow-maxCompute", provider=ProviderAlibabaPAI,
        version="v1", name="typeTransform", inputs={
            "inputArtifact": table_input, "execution": execution_input, 
            "outputTable": gen_temp_table(), "cols_to_double": cols_to_double_input,
        }
    )

    split_template = PipelineTemplate.get_by_identifier(identifier="split-xflow-maxCompute",
     provider=ProviderAlibabaPAI, version="v1")
    split_step = split_template.as_step(inputs={"inputArtifact": type_transform_step.outputs[0],
            "execution": execution_input, "output1TableName": gen_temp_table(),
            "fraction": 0.5, "output2TableName": gen_temp_table(),
        })

    # Initialize the pipeline instance by specific the steps and outputs.   
    p = Pipeline(
        steps=[split_step],
        outputs=split_step.outputs[:2],
    )
    return p

p = create_composite_pipeline()
# Run pipeline with required arguments.
pipeline_run = p.run(job_name="demo-composite-pipeline-run", arguments={
            "execution": xflow_execution,
            "cols_to_double": "time,hour,pm2,pm10,so2,co,no2",
            "data_source": "odps://pai_online_project/tables/wumai_data",
        }, wait=True)

# Save Pipeline
p.save(identifier="demo-composite-pipeline", version="v1")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

alibaba_pai-0.1.7-py2.py3-none-any.whl (99.6 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file alibaba_pai-0.1.7-py2.py3-none-any.whl.

File metadata

  • Download URL: alibaba_pai-0.1.7-py2.py3-none-any.whl
  • Upload date:
  • Size: 99.6 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.8.6

File hashes

Hashes for alibaba_pai-0.1.7-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 c46a7bd480af72ced90d673afb2c092c74a4d1dbaba731d8fb6421dfd3a21156
MD5 8fb27ac169241071f404e48dc72f4d1f
BLAKE2b-256 f1480e7e7cc11c4e1f9bdad9bbdc10263cc69d407dc0b2c1fd2ee236478491f3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page