Alibaba Cloud PAI Python SDK
Project description
Alibaba PAI Python SDK
AliPAI Python SDK is provided by PAI team of Alibaba computing platform. It provides convenience for users to access PAI service in Alibaba Cloud.
In current, PAI SDK supports PAIFlow(ML Pipeline Service of PAI) service, other PAI services, such as EAS(Elastic Algorithm Service) and Blade will be included soon.
Installation
To install the PAI sdk, use the below command in terminal.
python -m pip install alipai
Usage
Setup default PAI session
Before use PAI service via SDK, developer should initialize the default PAI session by providing credential and region_id of service.
Pipeline service of PAI is currently provided in
cn-shanghai
region only.
from pai.core.session import setup_default_session
session = setup_default_session(access_key_id="your_access_key", access_key_secret="your_access_secret", region_id="your_region_id")
Access Pipeline Service
Use PipelineTemplate
PipelineTemplate instance includes the definition of "Workflow" use in PAI pipeline service. It could be fetched from remote PAI service or constructed from local Pipeline/Component.
Saved pipeline template has unique pipeline_id
which is generated by pipeline service. Remote pipeline template could be fetched using identifier-provider-version or pipeline_id.
PAI provides a list of public pipeline templates which could be used as workflow template to run or to build pipeline. These templates are accessible by the specific provider pai.common.ProviderAlibabaPAI
in PipelineTemplate.list
.
from pai.pipeline import PipelineTemplate
from pai.common import ProviderAlibabaPAI
# search PipelineTemplate which provide by `PAI` and include `xflow` in identifier.
template = next(PipelineTemplate.list(identifie="xflow", provider=ProviderAlibabaPAI))
# view template inputs/outputs.
template
template.inputs
template.outputs
After submitting run job, users are able to inspect the detailed workflow DAG, execution log and outputs of the pipeline by visiting the job detail URL printed in console.
from pai.common import ProviderAlibabaPAI
from pai.pipeline import PipelineTemplate
# Get specific template by Identifier-Provider-Version
template = PipelineTemplate.get_by_identifier(identifier="split-xflow-maxCompute",
provider=ProviderAlibabaPAI, version="v1")
xflow_execution = {
"odpsInfoFile": "/share/base/odpsInfo.ini",
"endpoint": "http://service.cn-shanghai.maxcompute.aliyun.com/api",
"logViewHost": "http://logview.odps.aliyun.com",
"odpsProject": "your_odps_project",
}
# run pipeline use provide arguments.
job = template.run(job_name="demo-split-job", arguments={
"inputArtifact": "odps://pai_online_project/tables/mnist_data",
"execution": xflow_execution, "fraction": 0.7}, wait=True)
job.get_outputs()
Build runnable and reusable pipeline
PAI Pipeline Service supports nested user-defined workflow. Composite pipeline is runnable by providing required arguments. Saved pipeline template could be used as a step to build a new pipeline.
def create_composite_pipeline():
# Definite the inputs parameters in pipeline
execution_input = PipelineParameter(name="execution", typ=dict)
cols_to_double_input = PipelineParameter(name="cols_to_double")
table_input = PipelineArtifact(name="data_source", metadata=ArtifactMetadata(
data_type=ArtifactDataType.DataSet,
location_type=ArtifactLocationType.MaxComputeTable))
# Pipeline step from remote PAI service.
type_transform_step = PipelineStep(
identifier="type-transform-xflow-maxCompute", provider=ProviderAlibabaPAI,
version="v1", name="typeTransform", inputs={
"inputArtifact": table_input, "execution": execution_input,
"outputTable": gen_temp_table(), "cols_to_double": cols_to_double_input,
}
)
split_template = PipelineTemplate.get_by_identifier(identifier="split-xflow-maxCompute",
provider=ProviderAlibabaPAI, version="v1")
split_step = split_template.as_step(inputs={"inputArtifact": type_transform_step.outputs[0],
"execution": execution_input, "output1TableName": gen_temp_table(),
"fraction": 0.5, "output2TableName": gen_temp_table(),
})
# Initialize the pipeline instance by specific the steps and outputs.
p = Pipeline(
steps=[split_step],
outputs=split_step.outputs[:2],
)
return p
p = create_composite_pipeline()
# Run pipeline with required arguments.
pipeline_run = p.run(job_name="demo-composite-pipeline-run", arguments={
"execution": xflow_execution,
"cols_to_double": "time,hour,pm2,pm10,so2,co,no2",
"data_source": "odps://pai_online_project/tables/wumai_data",
}, wait=True)
# Save Pipeline
p.save(identifier="demo-composite-pipeline", version="v1")
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
File details
Details for the file alibaba_pai-0.1.7-py2.py3-none-any.whl
.
File metadata
- Download URL: alibaba_pai-0.1.7-py2.py3-none-any.whl
- Upload date:
- Size: 99.6 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c46a7bd480af72ced90d673afb2c092c74a4d1dbaba731d8fb6421dfd3a21156 |
|
MD5 | 8fb27ac169241071f404e48dc72f4d1f |
|
BLAKE2b-256 | f1480e7e7cc11c4e1f9bdad9bbdc10263cc69d407dc0b2c1fd2ee236478491f3 |