Skip to main content

Aliro Q.Network

Project description

aliro-aqn

This is an api for the Aliro Q.Network

This Python package is automatically generated by the OpenAPI Generator project:

  • API version: 1.50.0
  • Package version: 1.50.0
  • Build package: org.openapitools.codegen.languages.PythonClientCodegen

Requirements.

Python 2.7 and 3.4+

Installation & Usage

pip install

If the python package is hosted on a repository, you can install directly using:

pip install aliro-quantum-networking

Then import the package:

import aliro_quantum_networking

Getting Started

## Import necessary modules

import aliro_quantum_networking
from contextlib import contextmanager
from aliro_quantum_networking.models import ClassicalChannel, MemoryInput, Node, QuantumConnection, \
    Request, SubmissionAqnInput, SubmissionAqnOutput, SubmissionAqnBaseGlobalSettings, SubmissionOverviewInput
from aliro_quantum_networking.rest import ApiException
from pprint import pprint
from matplotlib import pyplot as plt
from typing import ContextManager
import uuid


## Set up authentication
# You can retrieve your API token in your "Account" page at https://aqn.aliro.io/#/user


configuration = aliro_quantum_networking.Configuration()
configuration.api_key['Authorization'] = 'API_TOKEN'
configuration.host = 'https://aqn.aliro.io/v1'


## Define nodes
# Define the nodes in your topology.
# 
# In this example, there will be a linear topology, having two end nodes with 25 quantum memories and 1 repeater between them with 50 quantum memories.


default_coherence_time = 10  # seconds
default_raw_fidelity = 0.85
memory_request_size = 5

def new_node_memory() -> MemoryInput:
    return MemoryInput(
        coherence_time=default_coherence_time,
        memory_type='MemoryInput',
        raw_fidelity=default_raw_fidelity
    )

end_node_1 = Node(
    name='alice',
    memories=[new_node_memory() for i in range(memory_request_size)]
)

end_node_2 = Node(
    name='bob',
    memories=[new_node_memory() for i in range(memory_request_size)]
)

repeater_1 = Node(
    name='repeater1',
    memories=[new_node_memory() for i in range(memory_request_size * 2)]
)

submission_nodes = [
    end_node_1,
    repeater_1,
    end_node_2
]


## Define quantum connections
# Define the quantum connections between nodes in your topology.
# 
# In this example, there will be two quantum connections, one between the repeater and each of the end nodes.


default_quantum_connection_attenuation = 1e-5  # decibels/kilometer
default_quantum_channel_distance = 5e3  # meters

quantum_connections = [
    QuantumConnection(
        attenuation=default_quantum_connection_attenuation,
        distance=default_quantum_channel_distance,
        node_from=submission_nodes[0].name,
        node_to=submission_nodes[1].name
    ),
    QuantumConnection(
        attenuation=default_quantum_connection_attenuation,
        distance=default_quantum_channel_distance,
        node_from=submission_nodes[1].name,
        node_to=submission_nodes[2].name
    )
]


## Define classical channels
# Define the classical channels between nodes in the topology.
# 
# In this example, there will be an all-to-all classical connection topology.


default_classical_channel_delay = 25e7  # picoseconds
default_classical_channel_distance = 1e3  # meters
submission_classical_channels = []

for i in submission_nodes:
    for j in submission_nodes:
        if i.name != j.name:
            submission_classical_channels.append(
                ClassicalChannel(
                    delay=default_classical_channel_delay,
                    distance=default_classical_channel_distance,
                    node_from=i.name,
                    node_to=j.name
                )
            )


## Define the desired network request
# Define the desired network request to simulate


default_request_target_fidelity = 0.9
default_request_simulation_start_time = 1e12
default_request_simulation_end_time = 1e14

network_request = Request(
    memory_size=memory_request_size,
    node_from=submission_nodes[0].name,
    node_to=submission_nodes[2].name,
    target_fidelity=default_request_target_fidelity,
    time_beginning=default_request_simulation_start_time,
    time_end=default_request_simulation_end_time
)


## Define full submission API input
# Put all inputs into the full input to send to the Aliro API


submission_name = f'SubmissionTest_{uuid.uuid4().hex}'

submission_input = SubmissionAqnInput(
    classical_channels=submission_classical_channels,
    global_settings=SubmissionAqnBaseGlobalSettings(
        excitation_rate=80000000,
        purification_protocol_name='BBPSSW_X'
    ),
    nodes=submission_nodes,
    quantum_connections=quantum_connections,
    request=network_request,
    submission_overview=SubmissionOverviewInput(
        name=submission_name,
        runs=1,
        timeout=10,
        timeline_stop_time=3e12,
        submission_overview_type='SubmissionOverviewInput'
    )
)


## Define submissions API instance context
# This will set up our API client and catch errors.
# This will be the same for all of our calls in this example, so we can define a reusable context here.

@contextmanager
def submissions_api_client(api_method_name: str) -> ContextManager[aliro_quantum_networking.SubmissionsApi]:
    with aliro_quantum_networking.ApiClient(configuration) as api_client:
        submissions_api_instance = aliro_quantum_networking.SubmissionsApi(api_client)
        try:
            yield submissions_api_instance
        except ApiException as e:
            print(f"Exception when calling SubmissionsApi->{api_method_name}: {e}\n")



## Submit the new submission


submission_id: str
with submissions_api_client(api_method_name='submissions_post') as submissions_api_instance:
    submission_api_response = submissions_api_instance.submissions_post(submission_aqn_input=submission_input)
    pprint(submission_api_response)

    submission_id = submission_api_response.submission_id


## Wait for completion
# This will likely take a few minutes or more.


submission_details: SubmissionAqnOutput
with submissions_api_client(api_method_name='submissions_details_stream_get') as submissions_api_instance:
    for submission_get_response in submissions_api_instance.submissions_details_stream_get(
        submission_id=submission_id
    ):
        submission_details = submission_get_response
        submission_is_complete = submission_details.submission_overview.complete_date
        if submission_is_complete:
            break


## Display number of entangled memories

PICOSECONDS_PER_SECOND = 1e12

fig, axes = plt.subplots(1, 3)
axes[0].set_ylabel("Number of Entangled Memories")
axes[1].set_xlabel("Simulation Time (s)")

first_run_results = submission_details.run_results[0]
node_names = [submission_node.name for submission_node in submission_nodes]
result_memories_all_nodes = [first_run_results.nodes[node_name].memories for node_name in node_names]

for node_name, node_result_memories, axis in zip(node_names, result_memories_all_nodes, axes):
    data = sorted(info.entangled_at_time / PICOSECONDS_PER_SECOND for info in node_result_memories if info.entangled_at_time)
    axis.set_title(node_name)
    axis.plot(data, range(1, len(data) + 1), marker="o")

fig.tight_layout()


## Display fidelities for entangled memories

fig, axes = plt.subplots(1,3)
axes[0].set_ylabel("Fidelity")
axes[1].set_xlabel("Memory Number")

def set_ax_properties(axis, data):
    data_length = len(data)
    axis.bar(range(data_length), data)
    for fidelity in (default_raw_fidelity, 0.9):
        axis.plot([0, data_length], 2 * [fidelity], "k--")
    axis.set_ylim(0.7,1)

for node_name, node_result_memories, axis in zip(node_names, result_memories_all_nodes, axes):
    data = [info.fidelity for info in node_result_memories]
    axis.set_title(node_name)
    set_ax_properties(axis, data)

fig.tight_layout()

Documentation for API Endpoints

All URIs are relative to http://localhost:3998/v1

Class Method HTTP request Description
AuthenticationApi auth_login_post POST /auth/login login using username and password
SubmissionsApi submissions_details_stream_get GET /submissions/details/stream get details about a submission's results
SubmissionsApi submissions_post POST /submissions submit a new submission
UserApi user_api_key_post POST /user/apiKey generate Aliro API key for user
UserApi user_information_update_post POST /user/informationUpdate update user email and name
UserApi user_password_change_post POST /user/passwordChange change user password from known password

Documentation For Models

Documentation For Authorization

JwtKeyAuth

  • Type: API key
  • API key parameter name: Authorization
  • Location: HTTP header

Author

nick@aliroquantum.com

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aliro-quantum-networking-1.50.0.tar.gz (44.3 kB view details)

Uploaded Source

Built Distribution

aliro_quantum_networking-1.50.0-py3-none-any.whl (92.1 kB view details)

Uploaded Python 3

File details

Details for the file aliro-quantum-networking-1.50.0.tar.gz.

File metadata

  • Download URL: aliro-quantum-networking-1.50.0.tar.gz
  • Upload date:
  • Size: 44.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.7.12

File hashes

Hashes for aliro-quantum-networking-1.50.0.tar.gz
Algorithm Hash digest
SHA256 e16b309bb441ad5783cfc1d5ed8c55646451ebb95bdf9bd3186d7197d5c64d1e
MD5 0e83c66944920874a2faac579ffa97d8
BLAKE2b-256 41fb4ba16fe0b6b5219cf880ccac56a19f9eafc08eff397fc2af23cc443a47f5

See more details on using hashes here.

File details

Details for the file aliro_quantum_networking-1.50.0-py3-none-any.whl.

File metadata

  • Download URL: aliro_quantum_networking-1.50.0-py3-none-any.whl
  • Upload date:
  • Size: 92.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.7.12

File hashes

Hashes for aliro_quantum_networking-1.50.0-py3-none-any.whl
Algorithm Hash digest
SHA256 03b0d8ac0f43413422176733b197fd853e2de4a66444464a1adc5dcfde272d0e
MD5 c91418e7307184ee052742bee08366e8
BLAKE2b-256 456e744b75faca9e9be9b9910dffd949583b61f4c3fd6dc5af72b76766186bf3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page