Skip to main content

Run a AllenNLP trained model, and serve it with WebAPI.

Project description

allennlp-runmodel

Run a AllenNLP trained model, and serve it with WebAPI.

Usage

Run the program

Execute the program in terminator, the option --help will show help message:

$ allennlp-runmodel --help
Usage: allennlp-runmodel [OPTIONS] COMMAND1 [ARGS]... [COMMAND2 [ARGS]...]...

  Start a webservice for running AllenNLP models.

Options:
  -V, --version
  -h, --host TEXT                 TCP/IP host for HTTP server.  [default:
                                  localhost]
  -p, --port INTEGER              TCP/IP port for HTTP server.  [default:
                                  8000]
  -a, --path TEXT                 File system path for HTTP server Unix domain
                                  socket. Listening on Unix domain sockets is
                                  not supported by all operating systems.
  -l, --logging-config FILE       Path to logging configuration file (JSON,
                                  YAML or INI) (ref: https://docs.python.org/l
                                  ibrary/logging.config.html#logging-config-
                                  dictschema)
  -v, --logging-level [critical|fatal|error|warn|warning|info|debug|notset]
                                  Sets the logging level, only affected when
                                  `--logging-config` not specified.  [default:
                                  info]
  --help                          Show this message and exit.

Commands:
  load  Load a pre-trained AllenNLP model from it's archive file, and put
        it...

and

$ allennlp-runmodel load --help
Usage: allennlp-runmodel load [OPTIONS] ARCHIVE

  Load a pre-trained AllenNLP model from it's archive file, and put it into
  the webservice contrainer.

Options:
  -m, --model-name TEXT           Model name used in URL. eg: http://xxx.xxx.x
                                  xx.xxx:8000/?model=model_name
  -t, --num-threads INTEGER       Sets the number of OpenMP threads used for
                                  parallelizing CPU operations. [default: 4
                                  (on this machine)]
  -w, --max-workers INTEGER       Uses a pool of at most max_workers threads
                                  to execute calls asynchronously. [default:
                                  num_threads/cpu_count (1 on this machine)]
  -w, --worker-type [process|thread]
                                  Sets the workers execute in thread or
                                  process.  [default: process]
  -d, --cuda-device INTEGER       If CUDA_DEVICE is >= 0, the model will be
                                  loaded onto the corresponding GPU. Otherwise
                                  it will be loaded onto the CPU.  [default:
                                  -1]
  -e, --predictor-name TEXT       Optionally specify which `Predictor`
                                  subclass; otherwise, the default one for the
                                  model will be used.
  --help                          Show this message and exit.

load sub-command can be called many times to load multiple models.

eg:

allennlp-runmodel  --port 8080 load --model-name model1 /path/of/model1.tar.gz load --model-name model2 /path/of/model2.tar.gz

Make prediction from HTTP client

curl \
  --header "Content-Type: application/json" \
  --request POST \
  --data '{"premise":"Two women are embracing while holding to go packages.","hypothesis":"The sisters are hugging goodbye while holding to go packages after just eating lunch."}' \
  http://localhost:8080/?model=model1

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

allennlp-runmodel-0.2.1.tar.gz (18.4 kB view details)

Uploaded Source

Built Distribution

allennlp_runmodel-0.2.1-py3-none-any.whl (9.1 kB view details)

Uploaded Python 3

File details

Details for the file allennlp-runmodel-0.2.1.tar.gz.

File metadata

  • Download URL: allennlp-runmodel-0.2.1.tar.gz
  • Upload date:
  • Size: 18.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for allennlp-runmodel-0.2.1.tar.gz
Algorithm Hash digest
SHA256 ce95b33bc41cbd722bab6a3d0d4a5799364fe6d8e7f803f3fd909ec5d32ae9f6
MD5 da7cad4d8f6010ceab43b22ef520df96
BLAKE2b-256 4edfd031d822dbc8e0e53fdc991f7700b9189b0d5a019b5e5b8b99e72757ac34

See more details on using hashes here.

File details

Details for the file allennlp_runmodel-0.2.1-py3-none-any.whl.

File metadata

  • Download URL: allennlp_runmodel-0.2.1-py3-none-any.whl
  • Upload date:
  • Size: 9.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for allennlp_runmodel-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 843dd5a48cae5e9e3226de5f1333d4c90b26cba6ca6cb8dbbb573467e84bc3db
MD5 73b26aecbe85b52fb6ec801d44556968
BLAKE2b-256 47a6dfc57aba1e27d63f88b7ed781473638d0615a06041466c4921b934d0db81

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page