A python library to measure algorithms execution time and compare with its theoretical complexity
Project description
Almetro Library
version number: 1.0.7 author: Arnour Sabino
Overview
A python library to measure algorithms execution time and compare with its theoretical complexity.
Installation / Usage
To install use pip:
$ pip install almetro
Or clone the repo:
$ git clone https://github.com/arnour/almetro.git
$ python setup.py install
Information
Almetro uses timeit module from python to time your algorithms.
See more here
Examples
Applying Almetro to a quadratic algorithm:
import almetro
from almetro.algorithms import loop_n_quadratic
from almetro.complexity import cn_quadratic
from almetro.instance import growing
metro = almetro\
.new()\
.with_execution(trials=5)\
.with_instances(instances=20, provider=growing(initial_size=100, growth_size=100))\
.metro(algorithm=loop_n_quadratic, complexity=cn_quadratic)
chart = metro.chart()
chart.show()
Applying Almetro to a lg n algorithm:
import almetro
from almetro.algorithms import loop_n_log
from almetro.complexity import clog_n
from almetro.instance import growing
metro = almetro\
.new()\
.with_execution(trials=100)\
.with_instances(instances=20, provider=growing(initial_size=10000, growth_size=10000))\
.metro(algorithm=loop_n_log, complexity=clog_n)
chart = metro.chart()
chart.show()
Customazing execution:
import almetro
from almetro.complexity import Complexity
from almetro.instance import generator
my_custom_complexity = Complexity(
theoretical=lambda v=1, e=1, c=1: v * v,
experimental=lambda v=1, e=1, c=1: v + e,
text='O(v^2)',
latex=r'$\mathcal{O}(v^2)$'
)
# You need to provide instances as dict: {'name': '', 'size': {}, 'value': {}}
# Size must contains all needed theoretical complexity arguments
# Value must contain all needed algorithms arguments
def my_custom_instances(n):
g = create_some_graph()
for _ in range(n):
yield {
'name': 'my instance name',
'size': {'v': len(g.nodes()), 'e': len(g.edges())}, 'c': some_order_value(),
'value': {
'graph': g,
'v': len(g.nodes())
}
}
def my_custom_algorithm(graph, v):
# Do some stuff
pass
N = 50
instances_generator = my_custom_instances(N)
# Trials determine how many times each instance will be repeated for Almetro to pick the min time.
metro = almetro\
.new()\
.with_execution(trials=5)\
.with_instances(instances=N, provider=generator(instances_generator)\
.metro(algorithm=my_custom_algorithm, complexity=my_custom_complexity)
metro.chart().show()
metro.table().show()
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
almetro-1.0.7.tar.gz
(11.3 kB
view details)
Built Distribution
almetro-1.0.7-py3-none-any.whl
(11.8 kB
view details)
File details
Details for the file almetro-1.0.7.tar.gz
.
File metadata
- Download URL: almetro-1.0.7.tar.gz
- Upload date:
- Size: 11.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fc36e46bf75d97c4a120ee4645e95f7c088ebefd6a279ce6c7cd9fe09ed1155a |
|
MD5 | d1616dcc53a1049ac882c6b6f0f4bcdc |
|
BLAKE2b-256 | 6e24136c3e64edc3c1d5c3a162a5aae7dfa478d6e1d262fed5cefc1f40f4e6f7 |
File details
Details for the file almetro-1.0.7-py3-none-any.whl
.
File metadata
- Download URL: almetro-1.0.7-py3-none-any.whl
- Upload date:
- Size: 11.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 465e4fc324870c58cdd7ee9b037b0172b194334e1fd70b32e75101eb55b4944a |
|
MD5 | c750721b06e6be910848db43b9135056 |
|
BLAKE2b-256 | f42aecf2c10de34a628b232a80397fa23da45ee72c496bf15a7acbd973cfe29c |