Skip to main content

Augmented Lagrangian and PANOC solvers for nonconvex numerical optimization

Project description

Build Status Test Coverage GitHub

alpaqa

Alpaqa is an efficient implementation of the Augmented Lagrangian method for general nonlinear programming problems, which uses the first-order, matrix-free PANOC algorithm as an inner solver.
The numerical algorithms themselves are implemented in C++ for optimal performance, and they are exposed as an easy-to-use Python package.

The solvers in this library solve minimization problems of the following form:

Problem formulation

The objective function f(x) and the constraints function g(x) should have a Lipschitz-continuous gradient.

Documentation

Sphinx documentation
Doxygen documentation
Python examples
C++ examples

Installation

The project is available on PyPI:

python3 -m pip install alpaqa

For more information, please see the full installation instructions.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

alpaqa-0.0.1.tar.gz (148.1 kB view details)

Uploaded Source

Built Distributions

alpaqa-0.0.1-cp310-cp310-win_amd64.whl (3.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

alpaqa-0.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_27_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.27+ x86-64

alpaqa-0.0.1-cp39-cp39-win_amd64.whl (3.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

alpaqa-0.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_27_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.27+ x86-64

alpaqa-0.0.1-cp38-cp38-win_amd64.whl (3.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

alpaqa-0.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_27_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.27+ x86-64

alpaqa-0.0.1-cp37-cp37m-win_amd64.whl (3.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

alpaqa-0.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_27_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.27+ x86-64

File details

Details for the file alpaqa-0.0.1.tar.gz.

File metadata

  • Download URL: alpaqa-0.0.1.tar.gz
  • Upload date:
  • Size: 148.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for alpaqa-0.0.1.tar.gz
Algorithm Hash digest
SHA256 f3c588a908862b9930163a4bbe410a28fe86c39c504f36589baca8159e66623e
MD5 70437f2c634789c82fdb3e956958a426
BLAKE2b-256 71f2bb06fef4435851f70a799e286f16b9219c8605e503c7c87aa2d7fa9d3bb1

See more details on using hashes here.

File details

Details for the file alpaqa-0.0.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: alpaqa-0.0.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for alpaqa-0.0.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d8dfa3b549b973d5778f9fa88b17404672aa449e2e81c2ddbb846a08f0274c37
MD5 a90316464bc7e78f3d3d095bdfd2d030
BLAKE2b-256 83bebebcda8459979bf838a830a6657f59d3aefe9a07665a74e79b650cb6d930

See more details on using hashes here.

File details

Details for the file alpaqa-0.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_27_x86_64.whl.

File metadata

File hashes

Hashes for alpaqa-0.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_27_x86_64.whl
Algorithm Hash digest
SHA256 af1db17398e65b0fcbba54e4924c94afdd0e5001810172238d4e606730ef9d3d
MD5 a6e3f099c095f88d2464fca02a745dbd
BLAKE2b-256 db4cc7ea87f3cd9aa56b4022b46814bc0280ec8bc0c6d015a17d24873981b0df

See more details on using hashes here.

File details

Details for the file alpaqa-0.0.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: alpaqa-0.0.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for alpaqa-0.0.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 95f1f0fbcb0b14d1fefc5ff129ba4113a6f5a06489d04e735abc69842ffcccdd
MD5 ddc7969ac58dfc938d20e9ca38fb7940
BLAKE2b-256 530649a52952bf3790f570b9724ee397f46b23e1f15948c15a164b640efb905e

See more details on using hashes here.

File details

Details for the file alpaqa-0.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_27_x86_64.whl.

File metadata

File hashes

Hashes for alpaqa-0.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_27_x86_64.whl
Algorithm Hash digest
SHA256 365b943630787767b158edaada31b28695769d65c740443da91aa5c829247ccf
MD5 d558b513639c8d965556800bd652b94a
BLAKE2b-256 f20487c779d9c5548fe3c9c49a8e7bb4c29fa2873bda96b57cbc73605a892765

See more details on using hashes here.

File details

Details for the file alpaqa-0.0.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: alpaqa-0.0.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for alpaqa-0.0.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c252482c2f910d02eb9623617197331b30a9c2f6ace584097c541aeb3034174e
MD5 06be9b0d80306b7876e471a7a476d721
BLAKE2b-256 569ad50fb2ee4f5c271421fac7931ca3e0b4dfc5218c2c2cf04ad22dd963aaab

See more details on using hashes here.

File details

Details for the file alpaqa-0.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_27_x86_64.whl.

File metadata

File hashes

Hashes for alpaqa-0.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_27_x86_64.whl
Algorithm Hash digest
SHA256 950ed6f9596fd076bf2ee1c7cb2cb5ad39ea4af3b680aaa65a0e8dc1ee5ebedd
MD5 0c23dcf2364a5d5e1119f5568618bac0
BLAKE2b-256 5f9e7823bfc02decdf8336a580e1c0bc0493c109ba56666771306dfa77443f05

See more details on using hashes here.

File details

Details for the file alpaqa-0.0.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: alpaqa-0.0.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.9

File hashes

Hashes for alpaqa-0.0.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 96e5c93bca8e16866641f7e3e79bb231130b45bd168da0f3641525689b0bb4c7
MD5 833ec3f80e0229ea04436b86f1d301f4
BLAKE2b-256 9a6defa055380e079c26f114c8e3b42e6dab0f4a471bf45f3445b11ddfcdf2b7

See more details on using hashes here.

File details

Details for the file alpaqa-0.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_27_x86_64.whl.

File metadata

File hashes

Hashes for alpaqa-0.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_27_x86_64.whl
Algorithm Hash digest
SHA256 3c9b52f65550ac6d4efe177c8f39803e3ce590275e455475f48b96e56832269b
MD5 9f13c63e197bf46815e9def9c464634b
BLAKE2b-256 ca0cee2472dadfe65ad1ee9e4d2b2e82bfd2ea2dafbf53fdd3e529ceef171b80

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page