Augmented Lagrangian and PANOC solvers for nonconvex numerical optimization
Project description
alpaqa
Alpaqa
is an efficient implementation of the Augmented Lagrangian method for general nonlinear programming problems,
which uses the first-order, matrix-free PANOC algorithm as an inner solver.
The numerical algorithms themselves are implemented in C++ for optimal performance,
and they are exposed as an easy-to-use Python package.
The solvers in this library solve minimization problems of the following form:
The objective function f(x) and the constraints function g(x) should have a Lipschitz-continuous gradient.
Documentation
Sphinx documentation
Doxygen documentation
Python examples
C++ examples
Installation
The project is available on PyPI:
python3 -m pip install alpaqa
For more information, please see the full installation instructions.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
File details
Details for the file alpaqa-0.0.1.tar.gz
.
File metadata
- Download URL: alpaqa-0.0.1.tar.gz
- Upload date:
- Size: 148.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f3c588a908862b9930163a4bbe410a28fe86c39c504f36589baca8159e66623e |
|
MD5 | 70437f2c634789c82fdb3e956958a426 |
|
BLAKE2b-256 | 71f2bb06fef4435851f70a799e286f16b9219c8605e503c7c87aa2d7fa9d3bb1 |
File details
Details for the file alpaqa-0.0.1-cp310-cp310-win_amd64.whl
.
File metadata
- Download URL: alpaqa-0.0.1-cp310-cp310-win_amd64.whl
- Upload date:
- Size: 3.2 MB
- Tags: CPython 3.10, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d8dfa3b549b973d5778f9fa88b17404672aa449e2e81c2ddbb846a08f0274c37 |
|
MD5 | a90316464bc7e78f3d3d095bdfd2d030 |
|
BLAKE2b-256 | 83bebebcda8459979bf838a830a6657f59d3aefe9a07665a74e79b650cb6d930 |
File details
Details for the file alpaqa-0.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_27_x86_64.whl
.
File metadata
- Download URL: alpaqa-0.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_27_x86_64.whl
- Upload date:
- Size: 3.7 MB
- Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64, manylinux: glibc 2.27+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | af1db17398e65b0fcbba54e4924c94afdd0e5001810172238d4e606730ef9d3d |
|
MD5 | a6e3f099c095f88d2464fca02a745dbd |
|
BLAKE2b-256 | db4cc7ea87f3cd9aa56b4022b46814bc0280ec8bc0c6d015a17d24873981b0df |
File details
Details for the file alpaqa-0.0.1-cp39-cp39-win_amd64.whl
.
File metadata
- Download URL: alpaqa-0.0.1-cp39-cp39-win_amd64.whl
- Upload date:
- Size: 3.2 MB
- Tags: CPython 3.9, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 95f1f0fbcb0b14d1fefc5ff129ba4113a6f5a06489d04e735abc69842ffcccdd |
|
MD5 | ddc7969ac58dfc938d20e9ca38fb7940 |
|
BLAKE2b-256 | 530649a52952bf3790f570b9724ee397f46b23e1f15948c15a164b640efb905e |
File details
Details for the file alpaqa-0.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_27_x86_64.whl
.
File metadata
- Download URL: alpaqa-0.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_27_x86_64.whl
- Upload date:
- Size: 3.7 MB
- Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64, manylinux: glibc 2.27+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 365b943630787767b158edaada31b28695769d65c740443da91aa5c829247ccf |
|
MD5 | d558b513639c8d965556800bd652b94a |
|
BLAKE2b-256 | f20487c779d9c5548fe3c9c49a8e7bb4c29fa2873bda96b57cbc73605a892765 |
File details
Details for the file alpaqa-0.0.1-cp38-cp38-win_amd64.whl
.
File metadata
- Download URL: alpaqa-0.0.1-cp38-cp38-win_amd64.whl
- Upload date:
- Size: 3.2 MB
- Tags: CPython 3.8, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c252482c2f910d02eb9623617197331b30a9c2f6ace584097c541aeb3034174e |
|
MD5 | 06be9b0d80306b7876e471a7a476d721 |
|
BLAKE2b-256 | 569ad50fb2ee4f5c271421fac7931ca3e0b4dfc5218c2c2cf04ad22dd963aaab |
File details
Details for the file alpaqa-0.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_27_x86_64.whl
.
File metadata
- Download URL: alpaqa-0.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_27_x86_64.whl
- Upload date:
- Size: 3.7 MB
- Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64, manylinux: glibc 2.27+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.8.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 950ed6f9596fd076bf2ee1c7cb2cb5ad39ea4af3b680aaa65a0e8dc1ee5ebedd |
|
MD5 | 0c23dcf2364a5d5e1119f5568618bac0 |
|
BLAKE2b-256 | 5f9e7823bfc02decdf8336a580e1c0bc0493c109ba56666771306dfa77443f05 |
File details
Details for the file alpaqa-0.0.1-cp37-cp37m-win_amd64.whl
.
File metadata
- Download URL: alpaqa-0.0.1-cp37-cp37m-win_amd64.whl
- Upload date:
- Size: 3.2 MB
- Tags: CPython 3.7m, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.7.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 96e5c93bca8e16866641f7e3e79bb231130b45bd168da0f3641525689b0bb4c7 |
|
MD5 | 833ec3f80e0229ea04436b86f1d301f4 |
|
BLAKE2b-256 | 9a6defa055380e079c26f114c8e3b42e6dab0f4a471bf45f3445b11ddfcdf2b7 |
File details
Details for the file alpaqa-0.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_27_x86_64.whl
.
File metadata
- Download URL: alpaqa-0.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_27_x86_64.whl
- Upload date:
- Size: 3.7 MB
- Tags: CPython 3.7m, manylinux: glibc 2.17+ x86-64, manylinux: glibc 2.27+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.7.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3c9b52f65550ac6d4efe177c8f39803e3ce590275e455475f48b96e56832269b |
|
MD5 | 9f13c63e197bf46815e9def9c464634b |
|
BLAKE2b-256 | ca0cee2472dadfe65ad1ee9e4d2b2e82bfd2ea2dafbf53fdd3e529ceef171b80 |