Skip to main content

generate alpha factors

Project description

This programme is to automatically generate alpha factors and filter relatively good factors with back-testing methods. Time consuming parts are optimized with numba package.

Dependencies

  • python >= 3.5

  • pandas >= 0.22.0

  • numpy >= 1.14.0

  • RNWS >= 0.2.1

  • numba >= 0.38.0

  • single_factor_model>=0.3.0

  • IPython 5.1.0

  • empyrical

  • alphalens

Note: It is best to use the latest version of llvmlite in order to make numba work properly. Otherwise it may couse a kernel-dies situation.

Example

load packages and read in data

from alpha_factory import generator_class,get_memory_use_pct,clean
from RNWS import read
import numpy as np
import pandas as pd
start=20180101
end=20180331
factor_path='.'
frame_path='.'

df=pd.read_csv(frame_path+'/frames.csv')

## read in data

re=read.read_df('./re',file_pattern='re',start=start,end=end)
cap=read.read_df('./cap',file_pattern='cap',header=0,dat_col='cap',start=start,end=end)
open_price,close,vwap,adj,high,low,volume,sus=read.read_df('./mkt_data',file_pattern='mkt',start=start,end=end,header=0,dat_col=['open','close','vwap','adjfactor','high','low','volume','sus'])
ind1,ind2,ind3=read.read_df('./ind',file_pattern='ind',start=start,end=end,header=0,dat_col=['level1','level2','level3'])
inx_weight=read.read_df('./ZZ800_weight','Stk_ZZ800',start=start,end=end,header=None,inx_col=1,dat_col=3)

Note:frames contains columns as: df_name,equation,dependency,type, where type includes df,cap,group. In this case frames.csv have df_name: re,cap,open_price,close,vwap,high,low,volume,ind1,ind2,ind3.

You can also read data by using pd.read_csv directly depending on how you store your data.

start to generate

parms={'re':close.mul(adj).pct_change()
       ,'cap':cap
       ,'open_price':open_price
       ,'close':close
       ,'vwap':vwap
       ,'high':high
       ,'low':low
       ,'volume':volume
       ,'ind1':ind1
       ,'ind2':ind2
       ,'ind3':ind3}

with generator_class(df,factor_path,**parms) as gen:
    gen.generator(batch_size=3,name_start='a')
    gen.generator(batch_size=3,name_start='a')
    gen.output_df(path=frame_path+'/frames_new.csv')

continue to generate with existing frames and factors

with generator_class(df,factor_path,**parms) as gen:
    gen.reload_df(path=frame_path+'/frames_new.csv')
    gen.reload_factors(align=True)
    clean()
    for i in range(5):
        gen.generator(batch_size=2,name_start='a')
        print('step %d memory usage:\t %.1f%% \n'%(i,get_memory_use_pct()))
        if get_memory_use_pct()>80:
            break
    gen.output_df(path=frame_path+'/frames_new2.csv')

Note: It is very important to align all factors and initial dataframes before generating.

you can also choose how to store your factors by setting store_method

backtesting with stratified sampling approach and ic-ir meansure after generation

data_box_param={'ind':ind1
            ,'price':vwap*adjfactor
            ,'sus':sus
            ,'ind_weight':inx_weight
            ,'path':'./databox'
            }

back_test_param={'sharpe_ratio_thresh':3
                 ,'n':5
                 ,'out_path':'.'
                 ,'back_end':'loky'
                 ,'n_jobs':6
                 ,'detail_root_path':None
                 ,'double_side_cost':0.003
                 ,'rf':0.03
                 }

icir_param={'ir_thresh':0.4
            ,'out_path':'.'
            ,'back_end':'loky'
            ,'n_jobs':6
            }

with generator_class(df,factor_path,**parms) as gen:
    for i in range(5):
        gen.generator(batch_size=2,name_start='a')
        gen.output_df(path=frame_path+'/frames_new.csv')
        gen.getOrCreate_databox(**data_box_param)
        gen.back_test(**back_test_param)
        gen.icir(**icir_param)
        clean()
        if get_memory_use_pct()>90:
            print('Memory exceeded')
            break

To temporarily save (and reload) factor data you can use create_tmp_memory and reload_tmp_memory methods. This is usually used before back_test and icir to release more memory for parallel running.

generate script of factors

from alpha_factory import write_file
import pandas as pd
df2=pd.read_csv(frame_path+'/frames_new.csv')
write_file(df2,'script.py')

locate a factor

from alpha_factory.utilise import get_factor_path
factor_name='a0'
path=get_factor_path(factor_path,factor_name)

only when storage_method='byTime'

use your own functions

To use your own functions you need to append your code in class functions from basic_functions.py in the sourse file and also append the corresponding names in functions.csv from data file in the sourse file.

After that you can set debug=True in generator function to check if there is any bug from all those functions. If indeed there is, a new embeded ipython would be activated to help you find out what is going on in the loop.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

alpha_factory-0.3.6.tar.gz (15.2 kB view details)

Uploaded Source

Built Distribution

alpha_factory-0.3.6-py3-none-any.whl (30.3 kB view details)

Uploaded Python 3

File details

Details for the file alpha_factory-0.3.6.tar.gz.

File metadata

  • Download URL: alpha_factory-0.3.6.tar.gz
  • Upload date:
  • Size: 15.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.14.2 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.5.5

File hashes

Hashes for alpha_factory-0.3.6.tar.gz
Algorithm Hash digest
SHA256 3b8bbf2647817b6c3de9b2fea7c85181261f58864a72e4169bda226825358734
MD5 9f8bdacb11356bf953c2e08f83d13307
BLAKE2b-256 19b5c85d5da9c65cc025f7ea83e42315ed1edaa93f160acbaf8a3856e144452c

See more details on using hashes here.

File details

Details for the file alpha_factory-0.3.6-py3-none-any.whl.

File metadata

  • Download URL: alpha_factory-0.3.6-py3-none-any.whl
  • Upload date:
  • Size: 30.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.14.2 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.5.5

File hashes

Hashes for alpha_factory-0.3.6-py3-none-any.whl
Algorithm Hash digest
SHA256 5ef9933d2aaca06eb9ec665b3e96d775cf7574bd6f37ba4efaad350e0637e1f1
MD5 ae2adb8e0bb1afebda0a8a5e52ae6a81
BLAKE2b-256 69556eaee2a5aacd6e2323498a433a0474acd3d8d5ae6ab8fd7415c6fc34cca9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page