Skip to main content

Vega-Altair: A declarative statistical visualization library for Python.

Project description

Vega-Altair

github actions typedlib_mypy JOSS Paper PyPI - Downloads

Vega-Altair is a declarative statistical visualization library for Python. With Vega-Altair, you can spend more time understanding your data and its meaning. Vega-Altair's API is simple, friendly and consistent and built on top of the powerful Vega-Lite JSON specification. This elegant simplicity produces beautiful and effective visualizations with a minimal amount of code.

Vega-Altair was originally developed by Jake Vanderplas and Brian Granger in close collaboration with the UW Interactive Data Lab. The Vega-Altair open source project is not affiliated with Altair Engineering, Inc.

Documentation

See Vega-Altair's Documentation Site as well as the Tutorial Notebooks. You can run the notebooks directly in your browser by clicking on one of the following badges:

Binder Colab

Example

Here is an example using Vega-Altair to quickly visualize and display a dataset with the native Vega-Lite renderer in the JupyterLab:

import altair as alt

# load a simple dataset as a pandas DataFrame
from vega_datasets import data
cars = data.cars()

alt.Chart(cars).mark_point().encode(
    x='Horsepower',
    y='Miles_per_Gallon',
    color='Origin',
)

Vega-Altair Visualization

One of the unique features of Vega-Altair, inherited from Vega-Lite, is a declarative grammar of not just visualization, but interaction. With a few modifications to the example above we can create a linked histogram that is filtered based on a selection of the scatter plot.

import altair as alt
from vega_datasets import data

source = data.cars()

brush = alt.selection_interval()

points = alt.Chart(source).mark_point().encode(
    x='Horsepower',
    y='Miles_per_Gallon',
    color=alt.condition(brush, 'Origin', alt.value('lightgray'))
).add_params(
    brush
)

bars = alt.Chart(source).mark_bar().encode(
    y='Origin',
    color='Origin',
    x='count(Origin)'
).transform_filter(
    brush
)

points & bars

Vega-Altair Visualization Gif

Features

  • Carefully-designed, declarative Python API.
  • Auto-generated internal Python API that guarantees visualizations are type-checked and in full conformance with the Vega-Lite specification.
  • Display visualizations in JupyterLab, Jupyter Notebook, Visual Studio Code, on GitHub and nbviewer, and many more.
  • Export visualizations to various formats such as PNG/SVG images, stand-alone HTML pages and the Online Vega-Lite Editor.
  • Serialize visualizations as JSON files.

Installation

Vega-Altair can be installed with:

pip install altair

If you are using the conda package manager, the equivalent is:

conda install altair -c conda-forge

For full installation instructions, please see the documentation.

Getting Help

If you have a question that is not addressed in the documentation, you can post it on StackOverflow using the altair tag. For bugs and feature requests, please open a Github Issue.

Development

Hatch project Ruff pytest

You can find the instructions on how to install the package for development in the documentation.

To run the tests and linters, use

hatch run test

For information on how to contribute your developments back to the Vega-Altair repository, see CONTRIBUTING.md

Citing Vega-Altair

JOSS Paper

If you use Vega-Altair in academic work, please consider citing https://joss.theoj.org/papers/10.21105/joss.01057 as

@article{VanderPlas2018,
    doi = {10.21105/joss.01057},
    url = {https://doi.org/10.21105/joss.01057},
    year = {2018},
    publisher = {The Open Journal},
    volume = {3},
    number = {32},
    pages = {1057},
    author = {Jacob VanderPlas and Brian Granger and Jeffrey Heer and Dominik Moritz and Kanit Wongsuphasawat and Arvind Satyanarayan and Eitan Lees and Ilia Timofeev and Ben Welsh and Scott Sievert},
    title = {Altair: Interactive Statistical Visualizations for Python},
    journal = {Journal of Open Source Software}
}

Please additionally consider citing the Vega-Lite project, which Vega-Altair is based on: https://dl.acm.org/doi/10.1109/TVCG.2016.2599030

@article{Satyanarayan2017,
    author={Satyanarayan, Arvind and Moritz, Dominik and Wongsuphasawat, Kanit and Heer, Jeffrey},
    title={Vega-Lite: A Grammar of Interactive Graphics},
    journal={IEEE transactions on visualization and computer graphics},
    year={2017},
    volume={23},
    number={1},
    pages={341-350},
    publisher={IEEE}
} 

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

altair_alx_alpha-5.4.1a0.tar.gz (827.0 kB view details)

Uploaded Source

Built Distribution

altair_alx_alpha-5.4.1a0-py3-none-any.whl (858.0 kB view details)

Uploaded Python 3

File details

Details for the file altair_alx_alpha-5.4.1a0.tar.gz.

File metadata

  • Download URL: altair_alx_alpha-5.4.1a0.tar.gz
  • Upload date:
  • Size: 827.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-httpx/0.27.0

File hashes

Hashes for altair_alx_alpha-5.4.1a0.tar.gz
Algorithm Hash digest
SHA256 f4b5609885efb24c73412b9c533caf15214065ddd3ebec802912d8770e436394
MD5 d8f0b26bbb2538b020ae5df6f1a78c69
BLAKE2b-256 f491e29278c97c4b4767b95cdb44a178d8c47faf1690f13053cf7aead3a7eeef

See more details on using hashes here.

File details

Details for the file altair_alx_alpha-5.4.1a0-py3-none-any.whl.

File metadata

File hashes

Hashes for altair_alx_alpha-5.4.1a0-py3-none-any.whl
Algorithm Hash digest
SHA256 85cdee7b802855abf5e68367bb43e8c9a2ca8f53a99f351a7f369f3faa1ba946
MD5 06267f518ca1bf0b78552d15fbeda82e
BLAKE2b-256 0dd47fab35753c18ffece0e79fd0cdc5ef93b196bb193fc899fc7bbcc309381d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page