Skip to main content

Automated mouse atlas propagation

Project description

Python Version PyPI Wheel Development Status Travis Coverage Status Dependabot Status Code style: black Gitter DOI

amap-python

Automated mouse atlas propagation

About

amap is python software for registration of brain templates to sample whole-brain microscopy datasets, and subsequent atlas-based segmentation by Adam Tyson, Charly Rousseau & Christian Niedworok from the Margrie Lab at the Sainsbury Wellcome Centre.

This is a Python port of aMAP (originally written in Java), which has been validated against human segmentation.

The actual registration is carried out by NiftyReg.

Documentation can be found here.

Details

The aim of amap is to register the template brain (e.g. from the Allen Reference Atlas) to the sample image. Once this is complete, any other image in the template space can be aligned with the sample (such as region annotations, for segmentation of the sample image). The template to sample transformation can also be inverted, allowing sample images to be aligned in a common coordinate space.

To do this, the template and sample images are filtered, and then registered in a three step process (reorientation, affine registration, and freeform registration.) The resulting transform from template to standard space is then applied to the atlas.

Full details of the process are in the original paper. process Overview of the registration process

Installation

pip install amap

Usage

amap was designed with generality in mind, but is currently used for a single application. If anyone has different uses (e.g. requires a different atlas, or the data is in a different format), please get in touch by email or by raising an issue.

Basic usage

amap /path/to/raw/data /path/to/output/directory -x 2 -y 2 -z 5

Arguments

Mandatory

  • Path to the directory of the images. Can also be a text file pointing to the files.
  • Output directory for all intermediate and final results

Either

  • -x or --x-pixel-um Pixel spacing of the data in the first dimension, specified in um.
  • -y or --y-pixel-um Pixel spacing of the data in the second dimension, specified in um.
  • -z or --z-pixel-um Pixel spacing of the data in the third dimension, specified in um.

Or

  • --metadata Metadata file containing pixel sizes (any format supported by micrometa can be used). If both pixel sizes and metadata are provided, the command line arguments will take priority.

Additional options

  • -d or --downsample Paths to N additional channels to downsample to the same coordinate space.

Full command-line arguments are available with amap -h, but please get in touch if you have any questions.

Citing amap.

If you find amap useful, and use it in your research, please cite the original Nature Communications paper along with this repository:

Adam L. Tyson, Charly V. Rousseau, Christian J. Niedworok and Troy W. Margrie (2019). amap: automatic atlas propagation. doi:10.5281/zenodo.3582162

Visualisation

amap has a built in visualisation function (built using napari).

Usage

amap_vis /path/to/amap/output/directory

Mandatory

  • Path to amap output directory

Additional options

  • -r or --raw. Rather than viewing the downsampled data, view the raw data at full resolution. This will stream image planes as required, and so may be slow.
  • -c or --raw-channels Paths to N additional channels to view. Will only work if using the raw image viewer.

N.B. If you have a high-resolution monitor, the scaling of the viewer may not work, this is a known napari issue.

amap_viewer

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

amap-0.1.23.tar.gz (22.6 kB view details)

Uploaded Source

Built Distribution

amap-0.1.23-py3-none-any.whl (37.2 kB view details)

Uploaded Python 3

File details

Details for the file amap-0.1.23.tar.gz.

File metadata

  • Download URL: amap-0.1.23.tar.gz
  • Upload date:
  • Size: 22.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.4.0.post20200518 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.6.10

File hashes

Hashes for amap-0.1.23.tar.gz
Algorithm Hash digest
SHA256 3cc83e7668d9e8ac702af652f4ba97bb0e69dc12ea83226160383e2aafcf5c41
MD5 65564348c7d78e78559c00f1e778b28b
BLAKE2b-256 c3a2ced486b0cc54c5349b13646cdd5bee7b66a1e83ae2bc7fd03f87402f68fe

See more details on using hashes here.

File details

Details for the file amap-0.1.23-py3-none-any.whl.

File metadata

  • Download URL: amap-0.1.23-py3-none-any.whl
  • Upload date:
  • Size: 37.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.4.0.post20200518 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.6.10

File hashes

Hashes for amap-0.1.23-py3-none-any.whl
Algorithm Hash digest
SHA256 a1c0a54803cacb0ac00a9c53fe1d5209bd0d601723addaea7c959387fb6ee6e2
MD5 6780a30867640d6e1aba5142621f503f
BLAKE2b-256 dc4f0efcbde13925a99c090b094b8132be81f4f28689c9bdbbf78205eaeed889

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page