Skip to main content

An open source library that contains the schemas for Amazon Braket

Project description

Amazon Braket Python Schemas

Latest Version Supported Python Versions Build Status codecov Documentation Status Code Style: Black

Amazon Braket Python Schemas is an open source library that contains the schemas for Braket, including:

  • intermediate representations (IR) for Amazon Braket quantum tasks and offers serialization and deserialization of those IR payloads. Think of the IR as the contract between the Amazon Braket SDK and Amazon Braket API for quantum programs.
  • schemas for the S3 results of each quantum task
  • schemas for the device capabilities of each device

Installation

Prerequisites

  • Python 3.7+

Steps

The preferred way to get Amazon Braket Python Schemas is by installing the Amazon Braket Python SDK, which will pull in the schemas. Follow the instructions in the README for setup.

However, if you only want to use the schemas, it can be installed on its own as follows:

pip install amazon-braket-schemas

You can install from source by cloning this repository and running a pip install command in the root directory of the repository:

git clone https://github.com/aws/amazon-braket-schemas-python.git
cd amazon-braket-schemas-python
pip install .

You can check your currently installed version of amazon-braket-schemas with pip show:

pip show amazon-braket-schemas

or alternatively from within Python:

>>> import braket._schemas as braket_schemas
>>> braket_schemas.__version__

Usage

There are currently two types of IR, including jaqcd (JsonAwsQuantumCircuitDescription) and annealing. See below for their usage.

Serializing python structures

from braket.ir.openqasm import Program as OpenQASMProgram
from braket.ir.jaqcd import CNot, H
from braket.ir.gate_model_shared import Expectation
from braket.ir.jaqcd import Program as JaqcdProgram
from braket.ir.annealing import Problem, ProblemType

program = OpenQASMProgram(source="OPENQASM 3.0; cnot $0, $1;")
print(program.json(indent=2))

"""
{
  "braketSchemaHeader": {
    "name": "braket.ir.openqasm.program",
    "version": "1"
  },
  "source": "OPENQASM 3.0; cnot $0, $1;",
}
"""

program = JaqcdProgram(instructions=[H(target=0), CNot(control=0, target=1)])
print(program.json(indent=2))

"""
{
  "braketSchemaHeader": {
    "name": "braket.ir.jaqcd.program",
    "version": "1"
  },
  "instructions": [
    {
      "target": 0,
      "type": "h"
    },
    {
      "control": 0,
      "target": 1,
      "type": "cnot"
    }
  ],
  "results": null,
  "basis_rotation_instructions": null,
}
"""

program = JaqcdProgram(
    instructions=[H(target=0), CNot(control=0, target=1)],
    results=[Expectation(targets=[0], observable=['x'])],
    basis_rotation_instructions=[H(target=0)]
)
print(program.json(indent=2))

"""
{
  "braketSchemaHeader": {
    "name": "braket.ir.jaqcd.program",
    "version": "1"
  },
  "instructions": [
    {
      "target": 0,
      "type": "h"
    },
    {
      "control": 0,
      "target": 1,
      "type": "cnot"
    }
  ],
  "results": [
    {
      "observable": [
        "x"
      ],
      "targets": [
        0
      ],
      "type": "expectation"
    }
  ],
  "basis_rotation_instructions": [
    {
      "target": 0,
      "type": "h"
    }
  ]
}
"""

problem = Problem(type=ProblemType.QUBO, linear={0: 0.3, 4: -0.3}, quadratic={"0,5": 0.667})
print(problem.json(indent=2))

"""
{
  "braketSchemaHeader": {
    "name": "braket.ir.annealing.problem",
    "version": "1"
  },
  "type": "QUBO",
  "linear": {0: 0.3, 4: -0.3},
  "quadratic": {"0,5": 0.667}
}
"""

Deserializing into python structures

from braket.ir.openqasm import Program as OpenQASMProgram
from braket.ir.jaqcd import Program as JaqcdProgram
from braket.ir.annealing import Problem

openqasm_string = """
{
  "braketSchemaHeader": {
    "name": "braket.ir.openqasm.program",
    "version": "1"
  },
  "source": "OPENQASM 3.0; cnot $0, $1;",
}"""

program = OpenQASMProgram.parse_raw(openqasm_string)
print(program)

"""
braketSchemaHeader=BraketSchemaHeader(name='braket.ir.openqasm.program', version='1') source='OPENQASM 3.0; cnot $0, $1;'
"""

jaqcd_string = """
{
  "instructions": [
    {
      "target": 0,
      "type": "h"
    },
    {
      "control": 0,
      "target": 1,
      "type": "cnot"
    }
  ],
  "results": [
    {
      "observable": [
        "x"
      ],
      "targets": [
        0
      ],
      "type": "expectation"
    }
  ],
  "basis_rotation_instructions": [
    {
      "target": 0,
      "type": "h"
    }
  ]
}
"""

program = JaqcdProgram.parse_raw(jaqcd_string)
print(program)

"""
braketSchemaHeader=BraketSchemaHeader(name='braket.ir.jaqcd.program', version='1') instructions=[H(target=0, type=<Type.h: 'h'>), CNot(control=0, target=1, type=<Type.cnot: 'cnot'>)] results=[Expectation(observable=['x'], targets=[0], type=<Type.expectation: 'expectation'>)] basis_rotation_instructions=[H(target=0, type=<Type.h: 'h'>)]
"""

annealing_string = """
{
  "type": "QUBO",
  "linear": {0: 0.3, 4: -0.3},
  "quadratic": {"0,5": 0.667}
}
"""

problem = Problem.parse_raw(annealing_string)
print(problem)

"""
braketSchemaHeader=BraketSchemaHeader(name='braket.ir.annealing.problem', version='1') type=<ProblemType.QUBO: 'QUBO'>, linear={0: 0.3, 4: -0.3}, quadratic={'0,5': 0.667}
"""

Documentation

Detailed documentation, including the API reference, can be found on Read the Docs.

You can also generate the docs from source. First, install tox:

pip install tox

To build the Sphinx docs, run the following command in the root repo directory:

tox -e docs

You can then find the generated HTML files in build/documentation/html.

Testing

Make sure to install test dependencies first:

pip install -e "amazon-braket-schemas-python[test]"

To run the unit tests:

tox -e unit-tests

You can also pass in various pytest arguments to run selected tests:

tox -e unit-tests -- your-arguments

To run linters and doc generators and unit tests:

tox

For more information, please see pytest usage.

License

This project is licensed under the Apache-2.0 License.

Project details


Release history Release notifications | RSS feed

This version

1.9.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

amazon-braket-schemas-1.9.0.tar.gz (34.0 kB view details)

Uploaded Source

Built Distribution

amazon_braket_schemas-1.9.0-py3-none-any.whl (82.7 kB view details)

Uploaded Python 3

File details

Details for the file amazon-braket-schemas-1.9.0.tar.gz.

File metadata

  • Download URL: amazon-braket-schemas-1.9.0.tar.gz
  • Upload date:
  • Size: 34.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for amazon-braket-schemas-1.9.0.tar.gz
Algorithm Hash digest
SHA256 61995cf6c5e7362616b22a1ddb0483d6da467e182d050a258263686efdac490f
MD5 0e0a23d744d53e8a991b1914bebd1671
BLAKE2b-256 1daa207310180e24b721f4e329a40c3a099844ed68a3706c0b5e6dbf779ef8aa

See more details on using hashes here.

File details

Details for the file amazon_braket_schemas-1.9.0-py3-none-any.whl.

File metadata

File hashes

Hashes for amazon_braket_schemas-1.9.0-py3-none-any.whl
Algorithm Hash digest
SHA256 daff4f824617dcd65450987e8b9380044fea8eac422d8427664dffbaac1ba51a
MD5 cc8ac368b5ade19d3af3014dec40271b
BLAKE2b-256 b4146cef62573ff6aedd10d1cf571fa6fbdc55d24b0898e5a11bb62457ea76aa

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page