Amazon Photos API
Project description
Amazon Photos API
Table of Contents
It is recommended to use this API in a Jupyter Notebook, as the results from most endpoints are a DataFrame which can be neatly displayed and efficiently manipulated with vectorized ops. This becomes increasingly important if you have "large" amounts of data (e.g. >1 million photos/videos).
Installation
pip install amazon-photos -U
Output Examples
ap.db
dateTimeDigitized | id | name | ... | model | apertureValue | focalLength | width | height | size | |
---|---|---|---|---|---|---|---|---|---|---|
0 | 2019-07-06T18:22:00.000Z | HeMReF-vvJiTTkdPIeWuoP | 1694252973839.png | ... | iPhone XS | 54823/32325 | 17/4 | 3024 | 4032 | 432777 |
1 | 2023-01-18T09:36:22.000Z | z_HiIvASAKqWmdrkjWiqMZ | 1692626817154.jpg | ... | iPhone XS | 54823/32325 | 17/4 | 3024 | 4032 | 234257 |
2 | 2022-08-14T14:13:21.000Z | LKXEZbqoVrhrOYBezisGEQ | 1798219686789.jpg | ... | iPhone 11 Pro Max | 54823/32325 | 17/4 | 3024 | 4032 | 423987 |
3 | 2020-06-28T19:32:30.000Z | EPUeciHtfKkGiYkfUyEuMa | 1593482220567.jpg | ... | iPhone XS | 54823/32325 | 17/4 | 3024 | 4032 | 898957 |
4 | 2021-07-07T17:12:55.000Z | fdfKzRJbEyoVeGcfCoJgE- | 1592299282720.png | ... | iPhone XR | 54823/32325 | 17/4 | 3024 | 4032 | 432556 |
5 | 2021-08-18T18:32:41.000Z | crskJSmKPFRhxbpfkivyLm | 1592902159105.png | ... | iPhone XR | 54823/32325 | 17/4 | 3024 | 4032 | 123123 |
6 | 2023-08-23T19:12:21.000Z | qkBFUlyIdkUwVVSaVWWKEF | 1598138358650.png | ... | iPhone 11 | 54823/32325 | 17/4 | 3024 | 4032 | 437887 |
7 | 2021-06-19T17:14:13.000Z | TXKMKC-mHvSUrtRfwmtyDe | 1622199863606.jpg | ... | iPhone 12 Pro | 14447/10653 | 21/5 | 1536 | 2048 | 758432 |
8 | 2023-02-15T22:45:40.000Z | FRDvvjcZdpFWiwrIZfTNHO | 1581874518054.jpg | ... | iPhone 8 Plus | 54823/32325 | 399/100 | 1348 | 2049 | 862883 |
ap.print_tree()
~
├── Documents
├── Pictures
│ ├── iPhone
│ └── Web
│ ├── foo
│ └── bar
├── Videos
└── Backup
├── LAPTOP-XYZ
│ └── Desktop
└── DESKTOP-IJK
└── Desktop
Setup
[Update] Jan 04 2024: To avoid confusion, setting env vars is no longer supported. One must pass cookies directly as shown below.
Log in to Amazon Photos and copy the following cookies:
session-id
ubid
*at
*
Canada/Europe
where xx
is the TLD (top-level domain)
ubid-acbxx
at-acbxx
United States
ubid_main
at_main
E.g.
from amazon_photos import AmazonPhotos
ap = AmazonPhotos(
## US
# cookies={
# 'ubid_main': ...,
# 'at_main': ...,
# 'session-id': ...,
# },
## Canada
# cookies={
# 'ubid-acbca': ...,
# 'at-acbca': ...,
# 'session-id': ...,
# }
## Italy
# cookies={
# 'ubid-acbit': ...,
# 'at-acbit': ...,
# 'session-id': ...,
# }
)
Examples
A database named
ap.parquet
will be created during the initial setup. This is mainly used to reduce upload conflicts by checking your local file(s) md5 against the database before sending the request.
from amazon_photos import AmazonPhotos
ap = AmazonPhotos(
# see cookie examples above
cookies={...},
# optionally cache all intermediate JSON responses
tmp='tmp',
# pandas options
dtype_backend='pyarrow',
engine='pyarrow',
)
# get current usage stats
ap.usage()
# get entire Amazon Photos library. (default save to `ap.parquet`)
nodes = ap.query("type:(PHOTOS OR VIDEOS)")
# query Amazon Photos library with more filters applied. (default save to `ap.parquet`)
nodes = ap.query("type:(PHOTOS OR VIDEOS) AND things:(plant AND beach OR moon) AND timeYear:(2023) AND timeMonth:(8) AND timeDay:(14) AND location:(CAN#BC#Vancouver)")
# sample first 10 nodes
node_ids = nodes.id[:10]
# move a batch of images/videos to the trash bin
ap.trash(node_ids)
# get trash bin contents
ap.trashed()
# permanently delete a batch of images/videos.
ap.delete(node_ids)
# restore a batch of images/videos from the trash bin
ap.restore(node_ids)
# upload media (preserves local directory structure and copies to Amazon Photos root directory)
ap.upload('path/to/files')
# download a batch of images/videos
ap.download(node_ids)
# convenience method to get photos only
ap.photos()
# convenience method to get videos only
ap.videos()
# get all identifiers calculated by Amazon.
ap.aggregations(category="all")
# get specific identifiers calculated by Amazon.
ap.aggregations(category="location")
Search
Undocumented API, current endpoints valid Dec 2023.
For valid location and people IDs, see the results from the aggregations()
method.
name | type | description |
---|---|---|
ContentType | str | "JSON" |
_ | int | 1690059771064 |
asset | str | "ALL" "MOBILE" "NONE "DESKTOP" default: "ALL" |
filters | str | "type:(PHOTOS OR VIDEOS) AND things:(plant AND beach OR moon) AND timeYear:(2019) AND timeMonth:(7) AND location:(CAN#BC#Vancouver) AND people:(CyChdySYdfj7DHsjdSHdy)" default: "type:(PHOTOS OR VIDEOS)" |
groupByForTime | str | "day" "month" "year" |
limit | int | 200 |
lowResThumbnail | str | "true" "false" default: "true" |
resourceVersion | str | "V2" |
searchContext | str | "customer" "all" "unknown" "family" "groups" default: "customer" |
sort | str | "['contentProperties.contentDate DESC']" "['contentProperties.contentDate ASC']" "['createdDate DESC']" "['createdDate ASC']" "['name DESC']" "['name ASC']" default: "['contentProperties.contentDate DESC']" |
tempLink | str | "false" "true" default: "false" |
Nodes
Docs last updated in 2015
FieldName | FieldType | Sort Allowed | Notes |
---|---|---|---|
isRoot | Boolean | Only lower case "true" is supported. |
|
name | String | Yes | This field does an exact match on the name and prefix query. Consider node1{ "name" : "sample" } node2 { "name" : "sample1" } Query filtername:sample will return node1name:sample* will return node1 and node2 |
kind | String | Yes | To search for all the nodes which contains kind as FILE kind:FILE |
modifiedDate | Date (in ISO8601 Format) | Yes | To Search for all the nodes which has modified from time modifiedDate:{"2014-12-31T23:59:59.000Z" TO *] |
createdDate | Date (in ISO8601 Format) | Yes | To Search for all the nodes created on createdDate:2014-12-31T23:59:59.000Z |
labels | String Array | Only Equality can be tested with arrays. if labels contains ["name", "test", "sample"] .Label can be searched for name or combination of values. To get all the labels which contain name and test labels: (name AND test) |
|
description | String | To Search all the nodes for description with value 'test'description:test |
|
parents | String Array | Only Equality can be tested with arrays. if parents contains ["id1", "id2", "id3"] .Parent can be searched for name or combination of values. To get all the parents which contains id1 and id2 parents:id1 AND parents:id2 |
|
status | String | Yes | For searching nodes with AVAILABLE status.status:AVAILABLE |
contentProperties.size | Long | Yes | |
contentProperties.contentType | String | Yes | If prefix query, only the major content-type (e.g. image* , video* , etc.) is supported as a prefix. |
contentProperties.md5 | String | ||
contentProperties.contentDate | Date (in ISO8601 Format) | Yes | RangeQueries and equals queries can be used with this field |
contentProperties.extension | String | Yes |
Restrictions
Max # of Filter Parameters Allowed is 8
Filter Type | Filters |
---|---|
Equality | createdDate, description, isRoot, kind, labels, modifiedDate, name, parentIds, status |
Range | contentProperties.contentDate, createdDate, modifiedDate |
Prefix | contentProperties.contentType, name |
Range Queries
Operation | Syntax |
---|---|
GreaterThan | {"valueToBeTested" TO *} |
GreaterThan or Equal | ["ValueToBeTested" TO *] |
LessThan | {* TO "ValueToBeTested"} |
LessThan or Equal | {* TO "ValueToBeTested"] |
Between | ["ValueToBeTested_LowerBound" TO "ValueToBeTested_UpperBound"] |
Notes
https://www.amazon.ca/drive/v1/batchLink
- This endpoint is called when downloading a batch of photos/videos in the web interface. It then returns a URL to download a zip file, then makes a request to that url to download the content. When making a request to download data for 1200 nodes (max batch size), it turns out to be much slower (~2.5 minutes) than asynchronously downloading 1200 photos/videos individually (~1 minute).
Known File Types
Extension | Category |
---|---|
.doc | doc |
.docx | doc |
.docm | doc |
.dot | doc |
.dotx | doc |
.dotm | doc |
.asd | doc |
.cnv | doc |
.mp3 | mp3 |
.m4a | mp3 |
.m4b | mp3 |
.m4p | mp3 |
.wav | mp3 |
.aac | mp3 |
.aif | mp3 |
.mpa | mp3 |
.wma | mp3 |
.flac | mp3 |
.mid | mp3 |
.ogg | mp3 |
.xls | xls |
.xlm | xls |
.xll | xls |
.xlc | xls |
.xar | xls |
.xla | xls |
.xlb | xls |
.xlsb | xls |
.xlsm | xls |
.xlsx | xls |
.xlt | xls |
.xltm | xls |
.xltx | xls |
.xlw | xls |
.ppt | ppt |
.pptx | ppt |
.ppa | ppt |
.ppam | ppt |
.pptm | ppt |
.pps | ppt |
.ppsm | ppt |
.ppsx | ppt |
.pot | ppt |
.potm | ppt |
.potx | ppt |
.sldm | ppt |
.sldx | ppt |
.txt | txt |
.text | txt |
.rtf | txt |
.xml | markup |
.htm | markup |
.html | markup |
.zip | zip |
.rar | zip |
.7z | zip |
.jpg | img |
.jpeg | img |
.png | img |
.bmp | img |
.gif | img |
.tif | img |
.svg | img |
.mp4 | vid |
.m4v | vid |
.qt | vid |
.mov | vid |
.mpg | vid |
.mpeg | vid |
.3g2 | vid |
.3gp | vid |
.flv | vid |
.f4v | vid |
.asf | vid |
.avi | vid |
.wmv | vid |
.swf | exe |
.exe | exe |
.dll | exe |
.ax | exe |
.ocx | exe |
.rpm | exe |
Custom Image Labeling (Optional)
Categorize your images into folders using computer vision models.
pip install amazon-photos[extras] -U
See the Model List for a list of all available models.
Sample Models
Very Large
eva02_base_patch14_448.mim_in22k_ft_in22k_in1k
Large
eva02_large_patch14_448.mim_m38m_ft_in22k_in1k
Medium
eva02_small_patch14_336.mim_in22k_ft_in1k
vit_base_patch16_clip_384.laion2b_ft_in12k_in1k
vit_base_patch16_clip_384.openai_ft_in12k_in1k
caformer_m36.sail_in22k_ft_in1k_384
Small
eva02_tiny_patch14_336.mim_in22k_ft_in1k
tiny_vit_5m_224.dist_in22k_ft_in1k
edgenext_small.usi_in1k
xcit_tiny_12_p8_384.fb_dist_in1k
run(
'eva02_base_patch14_448.mim_in22k_ft_in22k_in1k',
path_in='images',
path_out='labeled',
thresh=0.0, # threshold for predictions, 0.9 means you want very confident predictions only
topk=5,
# window of predictions to check if using exclude or restrict, if set to 1, only the top prediction will be checked
exclude=lambda x: re.search('boat|ocean', x, flags=re.I),
# function to exclude classification of these predicted labels
restrict=lambda x: re.search('sand|beach|sunset', x, flags=re.I),
# function to restrict classification to only these predicted labels
dataloader_options={
'batch_size': 4, # *** adjust ***
'shuffle': False,
'num_workers': psutil.cpu_count(logical=False), # *** adjust ***
'pin_memory': True,
},
accumulate=False,
# accumulate results in path_out, if False, everything in path_out will be deleted before running again
device='cuda',
naming_style='name', # use human-readable label names, optionally use the label index or synset
debug=0,
)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file amazon-photos-0.0.93.tar.gz
.
File metadata
- Download URL: amazon-photos-0.0.93.tar.gz
- Upload date:
- Size: 25.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c53aa6afae033c9f7ab3e9d6ac86b4a1a39bf4abfdb81260f1e1774d8964bef9 |
|
MD5 | 6700034da43f53fba51f73bd4f781e64 |
|
BLAKE2b-256 | c3e872bd089b4dbbb8a3b540661e777aaa81e877adda8765f80def99dcabb954 |
Provenance
File details
Details for the file amazon_photos-0.0.93-py3-none-any.whl
.
File metadata
- Download URL: amazon_photos-0.0.93-py3-none-any.whl
- Upload date:
- Size: 20.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d00de734a66a526eb471b4aeeb779a8b794938eb3e25061619bfd9f6673fc464 |
|
MD5 | aa906834aab7400f40c730b5ac0aadff |
|
BLAKE2b-256 | 3c5c67619908bf1e01b4ae27d9232eabe4bba28eae69fb637e0f0774823f8e3b |