Skip to main content

SageMaker SQL Magic library

Project description

SageMaker SQL Magic Extension

This is a notebook extension provided by AWS SageMaker Studio team to run SQL queries inside SageMaker Jupyter notebooks. Currently, it supports running SQL on Redshift, Snowflake, and Athena.

Usage

Introduces the %%sm_sql and %sm_sql_manage ipython magic commands to run SQL queries inside SageMaker Jupyter notebooks.

Install

pip install amazon-sagemaker-sql-magic

Register the magic command:

%load_ext amazon_sagemaker_sql_magic

Show help content for %%sm_sql:

%%sm_sql?
Docstring:
::

  %sm_sql [--metastore-id METASTORE_ID] [--metastore-type METASTORE_TYPE]
              [--query-parameters QUERY_PARAMETERS]
              [--connection-properties CONNECTION_PROPERTIES]
              [--connection-name CONNECTION_NAME] [-df DATAFRAME]

Cell magic command to run SQL queries inside SageMaker Jupyter notebooks.

Format:
    %%sm_sql --metastore-id METASTORE_ID --metastore-type METASTORE_TYPE --query-parameters QUERY_PARAMETERS --connection-properties CONNECTION_PROPERTIES --connection-name CONNECTION_NAME -df, --dataframe DATAFRAME

Examples:
     # How to use '--metastore-id' and '--metastore-type'
     %%sm_sql --metastore-id my_glue_conn --metastore-type GLUE_CONNECTION
     SELECT * FROM my_db.my_schema.my_table

    # How to use '--connection-properties'
    %%sm_sql --connection-properties '{"connection_type": "SNOWFLAKE", "aws_secret_arn":"arn:aws:secretsmanager:us-west-2:123456789012:secret:my-snowflake-secret-123"}'
    SELECT * FROM my_db.my_schema.my_table

    # How to use '--query-parameters' with SNOWFLAKE/REDSHIFT as a data-source
    %%sm_sql --metastore-id my_glue_conn --metastore-type GLUE_CONNECTION --query-parameters '{"parameters":("John Smith")}'
    SELECT * FROM my_db.my_schema.my_table WHERE name = (%s);

    # How to use '--query-parameters' with ATHENA as a data-source
    %%sm_sql --metastore-id my_glue_conn --metastore-type GLUE_CONNECTION --query-parameters '{"parameters":{"name_var": "John Smith"}}'
    SELECT * FROM my_db.my_schema.my_table WHERE name = (%(name_var)s);

options:
  --metastore-id METASTORE_ID
                        Defines the metastore entity holding data-source
                        connection parameters e.g. a Glue connection name.
                        Support available for Glue connection.
  --metastore-type METASTORE_TYPE
                        Type of metastore to use for connecting to data-
                        source. Supported value(s): 'GLUE_CONNECTION'
  --query-parameters QUERY_PARAMETERS
                        SQL Query parameters as a dictionary encapsulator. See
                        examples above on how to use.
  --connection-properties CONNECTION_PROPERTIES
                        Data-source connection properties as a dictionary
                        encapsulator.See examples above on how to use.
  --connection-name CONNECTION_NAME
                        Name of the Glue connection to be re-used.
  -df DATAFRAME, --dataframe DATAFRAME
                        The name of pandas dataframe where the query results
                        will be stored

Show help content for %sm_sql_manage:

%sm_sql_manage?
Docstring:
::

  %sm_sql_manage [--set-connection-reuse SET_CONNECTION_REUSE]
                     [--list-cached-connections] [--clear-cached-connections]

Line magic command to manage SQL connections inside SageMaker Jupyter notebooks.

Format:
  %sm_sql_manage --set-connection-reuse True/False --list-cached-connections --clear-cached-connections

options:
  --set-connection-reuse SET_CONNECTION_REUSE
                        Set if connection should be reused. Example use:
                        %sm_sql_manage --set-connection-reuse True
  --list-cached-connections
                        List the cached connections. Example use:
                        %sm_sql_manage --list-cached-connections
  --clear-cached-connections
                        Clear all cached connections. Example use:
                        %sm_sql_manage --clear-cached-connections

Examples on how to use %%sm_sql

  1. Connect to a data-source using custom connection properties and fetch data from a table.
%%sm_sql --connection-properties '{"connection_type": "SNOWFLAKE", "aws_secret_arn":"arn:aws:secretsmanager:us-west-2:123456789012:secret:my-snowflake-secret-123"}'
SELECT * FROM my_db.my_schema.my_table
  1. Connect to a data-source using a Glue connection and fetch data from a table.
%%sm_sql --metastore-id my_glue_conn --metastore-type GLUE_CONNECTION
SELECT * FROM my_db.my_schema.my_table
  1. Connect to a data-source to fetch data from a table and save results into a pandas dataframe.
%%sm_sql --metastore-id my_glue_conn --metastore-type GLUE_CONNECTION --dataframe my_df
SELECT * FROM my_db.my_schema.my_table
  1. Connect to a data-source to fetch data from a table using a parameterized SQL query.
%%sm_sql --metastore-id my_glue_conn --metastore-type GLUE_CONNECTION --query-parameters '{"parameters":("John Smith")}'
UPDATE my_db.my_schema.my_table SET name = (%s);

License

This library is licensed under the Apache 2.0 License. See the LICENSE file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

amazon_sagemaker_sql_magic-0.1.3.tar.gz (18.8 kB view details)

Uploaded Source

File details

Details for the file amazon_sagemaker_sql_magic-0.1.3.tar.gz.

File metadata

File hashes

Hashes for amazon_sagemaker_sql_magic-0.1.3.tar.gz
Algorithm Hash digest
SHA256 0f9dc8f69104c910021ea99a506b813da6427d7afc2685a2a61ba3eab5204bf5
MD5 d9d44bbb08a60b6a9dd0cff6d96485af
BLAKE2b-256 a330e880d383466d7a950565c32f478ce7655452f717d54652f05a2cd0571fb0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page