SageMaker SQL Magic library
Project description
SageMaker SQL Magic Extension
This is a notebook extension provided by AWS SageMaker Studio team to run SQL queries inside SageMaker Jupyter notebooks. Currently, it supports running SQL on Redshift, Snowflake, and Athena.
Usage
Introduces the %%sm_sql
and %sm_sql_manage
ipython magic commands to run SQL queries inside SageMaker Jupyter notebooks.
Install
pip install amazon-sagemaker-sql-magic
Register the magic command:
%load_ext amazon_sagemaker_sql_magic
Show help content for %%sm_sql
:
%%sm_sql?
Docstring:
::
%sm_sql [--metastore-id METASTORE_ID] [--metastore-type METASTORE_TYPE]
[--query-parameters QUERY_PARAMETERS]
[--connection-properties CONNECTION_PROPERTIES]
[--connection-name CONNECTION_NAME] [-df DATAFRAME]
Cell magic command to run SQL queries inside SageMaker Jupyter notebooks.
Format:
%%sm_sql --metastore-id METASTORE_ID --metastore-type METASTORE_TYPE --query-parameters QUERY_PARAMETERS --connection-properties CONNECTION_PROPERTIES --connection-name CONNECTION_NAME -df, --dataframe DATAFRAME
Examples:
# How to use '--metastore-id' and '--metastore-type'
%%sm_sql --metastore-id my_glue_conn --metastore-type GLUE_CONNECTION
SELECT * FROM my_db.my_schema.my_table
# How to use '--connection-properties'
%%sm_sql --connection-properties '{"connection_type": "SNOWFLAKE", "aws_secret_arn":"arn:aws:secretsmanager:us-west-2:123456789012:secret:my-snowflake-secret-123"}'
SELECT * FROM my_db.my_schema.my_table
# How to use '--query-parameters' with SNOWFLAKE/REDSHIFT as a data-source
%%sm_sql --metastore-id my_glue_conn --metastore-type GLUE_CONNECTION --query-parameters '{"parameters":("John Smith")}'
SELECT * FROM my_db.my_schema.my_table WHERE name = (%s);
# How to use '--query-parameters' with ATHENA as a data-source
%%sm_sql --metastore-id my_glue_conn --metastore-type GLUE_CONNECTION --query-parameters '{"parameters":{"name_var": "John Smith"}}'
SELECT * FROM my_db.my_schema.my_table WHERE name = (%(name_var)s);
options:
--metastore-id METASTORE_ID
Defines the metastore entity holding data-source
connection parameters e.g. a Glue connection name.
Support available for Glue connection.
--metastore-type METASTORE_TYPE
Type of metastore to use for connecting to data-
source. Supported value(s): 'GLUE_CONNECTION'
--query-parameters QUERY_PARAMETERS
SQL Query parameters as a dictionary encapsulator. See
examples above on how to use.
--connection-properties CONNECTION_PROPERTIES
Data-source connection properties as a dictionary
encapsulator.See examples above on how to use.
--connection-name CONNECTION_NAME
Name of the Glue connection to be re-used.
-df DATAFRAME, --dataframe DATAFRAME
The name of pandas dataframe where the query results
will be stored
Show help content for %sm_sql_manage
:
%sm_sql_manage?
Docstring:
::
%sm_sql_manage [--set-connection-reuse SET_CONNECTION_REUSE]
[--list-cached-connections] [--clear-cached-connections]
Line magic command to manage SQL connections inside SageMaker Jupyter notebooks.
Format:
%sm_sql_manage --set-connection-reuse True/False --list-cached-connections --clear-cached-connections
options:
--set-connection-reuse SET_CONNECTION_REUSE
Set if connection should be reused. Example use:
%sm_sql_manage --set-connection-reuse True
--list-cached-connections
List the cached connections. Example use:
%sm_sql_manage --list-cached-connections
--clear-cached-connections
Clear all cached connections. Example use:
%sm_sql_manage --clear-cached-connections
Examples on how to use %%sm_sql
- Connect to a data-source using custom connection properties and fetch data from a table.
%%sm_sql --connection-properties '{"connection_type": "SNOWFLAKE", "aws_secret_arn":"arn:aws:secretsmanager:us-west-2:123456789012:secret:my-snowflake-secret-123"}'
SELECT * FROM my_db.my_schema.my_table
- Connect to a data-source using a Glue connection and fetch data from a table.
%%sm_sql --metastore-id my_glue_conn --metastore-type GLUE_CONNECTION
SELECT * FROM my_db.my_schema.my_table
- Connect to a data-source to fetch data from a table and save results into a pandas dataframe.
%%sm_sql --metastore-id my_glue_conn --metastore-type GLUE_CONNECTION --dataframe my_df
SELECT * FROM my_db.my_schema.my_table
- Connect to a data-source to fetch data from a table using a parameterized SQL query.
%%sm_sql --metastore-id my_glue_conn --metastore-type GLUE_CONNECTION --query-parameters '{"parameters":("John Smith")}'
UPDATE my_db.my_schema.my_table SET name = (%s);
License
This library is licensed under the Apache 2.0 License. See the LICENSE file.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file amazon_sagemaker_sql_magic-0.1.3.tar.gz
.
File metadata
- Download URL: amazon_sagemaker_sql_magic-0.1.3.tar.gz
- Upload date:
- Size: 18.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0f9dc8f69104c910021ea99a506b813da6427d7afc2685a2a61ba3eab5204bf5 |
|
MD5 | d9d44bbb08a60b6a9dd0cff6d96485af |
|
BLAKE2b-256 | a330e880d383466d7a950565c32f478ce7655452f717d54652f05a2cd0571fb0 |