Skip to main content

Amazon Textract Caller tools

Project description

Textract-Caller

amazon-textract-caller provides a collection of ready to use functions and sample implementations to speed up the evaluation and development for any project using Amazon Textract.

Making it easy to call Amazon Textract regardless of file type and location.

Install

> python -m pip install amazon-textract-caller

Functions

from textractcaller.t_call import call_textract
def call_textract(input_document: Union[str, bytearray],
                  features: List[Textract_Features] = None,
                  output_config: OutputConfig = None,
                  kms_key_id: str = None,
                  job_tag: str = None,
                  notification_channel: NotificationChannel = None,
                  client_request_token: str = None,
                  return_job_id: bool = False,
                  force_async_api: bool = False) -> dict:

Also useful when receiving the JSON response from an asynchronous job (start_document_text_detection or start_document_analysis)

from textractcaller.t_call import get_full_json
def get_full_json(job_id: str = None,
                  textract_api: Textract_API = Textract_API.DETECT,
                  boto3_textract_client=None)->dict:

And when receiving the JSON from the OutputConfig location, this method is useful as well.

from textractcaller.t_call import get_full_json_from_output_config
def get_full_json_from_output_config(output_config: OutputConfig = None,
                                     job_id: str = None,
                                     s3_client = None)->dict:

Samples

Calling with file from local filesystem only with detect_text

textract_json = call_textract(input_document="/folder/local-filesystem-file.png")

Calling with file from local filesystem only detect_text and using in Textract Response Parser

(needs trp dependency through python -m pip install amazon-textract-response-parser)

import json
from trp import Document
from textractcaller.t_call import call_textract

textract_json = call_textract(input_document="/folder/local-filesystem-file.png")
d = Document(textract_json)

Calling with file from local filesystem with TABLES features

from textractcaller.t_call import call_textract, Textract_Features
features = [Textract_Features.TABLES]
response = call_textract(
    input_document="/folder/local-filesystem-file.png", features=features)

Call with images located on S3 but force asynchronous API

from textractcaller.t_call import call_textract
response = call_textract(input_document="s3://some-bucket/w2-example.png", force_async_api=True)

Call with OutputConfig, Customer-Managed-Key

from textractcaller.t_call import call_textract
from textractcaller.t_call import OutputConfig, Textract_Features
output_config = OutputConfig(s3_bucket="somebucket-encrypted", s3_prefix="output/")
response = call_textract(input_document="s3://someprefix/somefile.png",
                          force_async_api=True,
                          output_config=output_config,
                          kms_key_id="arn:aws:kms:us-east-1:12345678901:key/some-key-id-ref-erence",
                          return_job_id=False,
                          job_tag="sometag",
                          client_request_token="sometoken")

Call with PDF located on S3 and force return of JobId instead of JSON response

from textractcaller.t_call import call_textract
response = call_textract(input_document="s3://some-bucket/some-document.pdf", return_job_id=True)
job_id = response['JobId']

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

amazon-textract-caller-0.0.11.tar.gz (10.4 kB view details)

Uploaded Source

Built Distribution

amazon_textract_caller-0.0.11-py2.py3-none-any.whl (10.4 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file amazon-textract-caller-0.0.11.tar.gz.

File metadata

  • Download URL: amazon-textract-caller-0.0.11.tar.gz
  • Upload date:
  • Size: 10.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for amazon-textract-caller-0.0.11.tar.gz
Algorithm Hash digest
SHA256 b7d48576b538fa1385be90f01bfa94d9494fa0d79f0da61e18563fb02ee66ba2
MD5 fd73ddc5738e43bfd6ee2fc2e6917f39
BLAKE2b-256 cdd64a2079e6732d8344f94744b7297b7cf601dbc86d2873d47d0491ba447fb0

See more details on using hashes here.

File details

Details for the file amazon_textract_caller-0.0.11-py2.py3-none-any.whl.

File metadata

  • Download URL: amazon_textract_caller-0.0.11-py2.py3-none-any.whl
  • Upload date:
  • Size: 10.4 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for amazon_textract_caller-0.0.11-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 752ee8e653567cb474d7b7ea4a2ed7eaaf78508644f642f90321051cfe8f0d70
MD5 673735fac03a8e02d601371723410b50
BLAKE2b-256 4209a52351e43478a9e58f68645ad822dab64338482e89a03e8b1dd39c41cbe0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page