Skip to main content

Amazon Textract Caller tools

Project description

Textract-Caller

amazon-textract-caller provides a collection of ready to use functions and sample implementations to speed up the evaluation and development for any project using Amazon Textract.

Making it easy to call Amazon Textract regardless of file type and location.

Install

> python -m pip install amazon-textract-caller

Functions

from textractcaller import call_textract
def call_textract(input_document: Union[str, bytearray],
                  features: List[Textract_Features] = None,
                  output_config: OutputConfig = None,
                  kms_key_id: str = None,
                  job_tag: str = None,
                  notification_channel: NotificationChannel = None,
                  client_request_token: str = None,
                  return_job_id: bool = False,
                  force_async_api: bool = False) -> dict:

Also useful when receiving the JSON response from an asynchronous job (start_document_text_detection or start_document_analysis)

from textractcaller import get_full_json
def get_full_json(job_id: str = None,
                  textract_api: Textract_API = Textract_API.DETECT,
                  boto3_textract_client=None)->dict:

And when receiving the JSON from the OutputConfig location, this method is useful as well.

from textractcaller import get_full_json_from_output_config
def get_full_json_from_output_config(output_config: OutputConfig = None,
                                     job_id: str = None,
                                     s3_client = None)->dict:

Samples

Calling with file from local filesystem only with detect_text

textract_json = call_textract(input_document="/folder/local-filesystem-file.png")

Calling with file from local filesystem only detect_text and using in Textract Response Parser

(needs trp dependency through python -m pip install amazon-textract-response-parser)

import json
from trp import Document
from textractcaller import call_textract

textract_json = call_textract(input_document="/folder/local-filesystem-file.png")
d = Document(textract_json)

Calling with file from local filesystem with TABLES features

from textractcaller import call_textract, Textract_Features
features = [Textract_Features.TABLES]
response = call_textract(
    input_document="/folder/local-filesystem-file.png", features=features)

Call with images located on S3 but force asynchronous API

from textractcaller import call_textract
response = call_textract(input_document="s3://some-bucket/w2-example.png", force_async_api=True)

Call with OutputConfig, Customer-Managed-Key

from textractcaller import call_textract
from textractcaller import OutputConfig, Textract_Features
output_config = OutputConfig(s3_bucket="somebucket-encrypted", s3_prefix="output/")
response = call_textract(input_document="s3://someprefix/somefile.png",
                          force_async_api=True,
                          output_config=output_config,
                          kms_key_id="arn:aws:kms:us-east-1:12345678901:key/some-key-id-ref-erence",
                          return_job_id=False,
                          job_tag="sometag",
                          client_request_token="sometoken")

Call with PDF located on S3 and force return of JobId instead of JSON response

from textractcaller import call_textract
response = call_textract(input_document="s3://some-bucket/some-document.pdf", return_job_id=True)
job_id = response['JobId']

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

amazon-textract-caller-0.0.22.tar.gz (11.2 kB view details)

Uploaded Source

Built Distribution

amazon_textract_caller-0.0.22-py2.py3-none-any.whl (11.7 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file amazon-textract-caller-0.0.22.tar.gz.

File metadata

  • Download URL: amazon-textract-caller-0.0.22.tar.gz
  • Upload date:
  • Size: 11.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for amazon-textract-caller-0.0.22.tar.gz
Algorithm Hash digest
SHA256 844078d1f244898f3971b009f69d4864b669a92e9768482f9d55f3ba9236feda
MD5 6c134dce6d5885bd80bcb6958d13df2b
BLAKE2b-256 d6afee0fd72c58a36dd0c41915bd75a841953b550f87ab402e1b2217628d55c8

See more details on using hashes here.

File details

Details for the file amazon_textract_caller-0.0.22-py2.py3-none-any.whl.

File metadata

  • Download URL: amazon_textract_caller-0.0.22-py2.py3-none-any.whl
  • Upload date:
  • Size: 11.7 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for amazon_textract_caller-0.0.22-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 243cc5084b4049ad96f48f51d002c1fc155dc72be1e352417b20571303cb71ef
MD5 a473995df64fcbf0164b8438f7b5d30b
BLAKE2b-256 9c8320a93c0cfb14dc80acea506cec421a86cadd62ac21124abb4b206fb44024

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page