Skip to main content

Amazon Textract Caller tools

Project description

Textract-Caller

amazon-textract-caller provides a collection of ready to use functions and sample implementations to speed up the evaluation and development for any project using Amazon Textract.

Making it easy to call Amazon Textract regardless of file type and location.

Install

> python -m pip install amazon-textract-caller

Functions

from textractcaller import call_textract
def call_textract(input_document: Union[str, bytearray],
                  features: List[Textract_Features] = None,
                  output_config: OutputConfig = None,
                  kms_key_id: str = None,
                  job_tag: str = None,
                  notification_channel: NotificationChannel = None,
                  client_request_token: str = None,
                  return_job_id: bool = False,
                  force_async_api: bool = False) -> dict:

Also useful when receiving the JSON response from an asynchronous job (start_document_text_detection or start_document_analysis)

from textractcaller import get_full_json
def get_full_json(job_id: str = None,
                  textract_api: Textract_API = Textract_API.DETECT,
                  boto3_textract_client=None)->dict:

And when receiving the JSON from the OutputConfig location, this method is useful as well.

from textractcaller import get_full_json_from_output_config
def get_full_json_from_output_config(output_config: OutputConfig = None,
                                     job_id: str = None,
                                     s3_client = None)->dict:

Samples

Calling with file from local filesystem only with detect_text

textract_json = call_textract(input_document="/folder/local-filesystem-file.png")

Calling with file from local filesystem only detect_text and using in Textract Response Parser

(needs trp dependency through python -m pip install amazon-textract-response-parser)

import json
from trp import Document
from textractcaller import call_textract

textract_json = call_textract(input_document="/folder/local-filesystem-file.png")
d = Document(textract_json)

Calling with file from local filesystem with TABLES features

from textractcaller import call_textract, Textract_Features
features = [Textract_Features.TABLES]
response = call_textract(
    input_document="/folder/local-filesystem-file.png", features=features)

Call with images located on S3 but force asynchronous API

from textractcaller import call_textract
response = call_textract(input_document="s3://some-bucket/w2-example.png", force_async_api=True)

Call with OutputConfig, Customer-Managed-Key

from textractcaller import call_textract
from textractcaller import OutputConfig, Textract_Features
output_config = OutputConfig(s3_bucket="somebucket-encrypted", s3_prefix="output/")
response = call_textract(input_document="s3://someprefix/somefile.png",
                          force_async_api=True,
                          output_config=output_config,
                          kms_key_id="arn:aws:kms:us-east-1:12345678901:key/some-key-id-ref-erence",
                          return_job_id=False,
                          job_tag="sometag",
                          client_request_token="sometoken")

Call with PDF located on S3 and force return of JobId instead of JSON response

from textractcaller import call_textract
response = call_textract(input_document="s3://some-bucket/some-document.pdf", return_job_id=True)
job_id = response['JobId']

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

amazon-textract-caller-0.0.24.tar.gz (11.8 kB view details)

Uploaded Source

Built Distribution

amazon_textract_caller-0.0.24-py2.py3-none-any.whl (12.2 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file amazon-textract-caller-0.0.24.tar.gz.

File metadata

  • Download URL: amazon-textract-caller-0.0.24.tar.gz
  • Upload date:
  • Size: 11.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for amazon-textract-caller-0.0.24.tar.gz
Algorithm Hash digest
SHA256 7ba552f64b30b2433452d5306ef8a63ac489c259b1bc7a6c9fbc1bb5ce1ae706
MD5 1e6da5cfe989bacce4b5b8c1729aa222
BLAKE2b-256 ef7be91d35d50b838cbe014bb32121047db0fc05c84fa31e8b30f7377d7bb3ba

See more details on using hashes here.

File details

Details for the file amazon_textract_caller-0.0.24-py2.py3-none-any.whl.

File metadata

  • Download URL: amazon_textract_caller-0.0.24-py2.py3-none-any.whl
  • Upload date:
  • Size: 12.2 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for amazon_textract_caller-0.0.24-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 c4682b69c8531bbbc26bca01dba9b29d082cfcc4fa96531a47130ac0db11a62b
MD5 e53431301a2bd84d80fd2073f18f6f63
BLAKE2b-256 ebb73c5a9b4c8137e8485377beb2fa9715a90e53b4d680b05a54082af4307bb1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page