Skip to main content

A full implementation of the ICAO standard atmosphere 1993

Project description

Latest PyPI version Documentation Status License Build status Coverage

Ambiance

Ambiance is a full implementation of the ICAO standard atmosphere 1993 written in Python.

Basic usage

Atmospheric properties are computed from an Atmosphere object which takes the altitude (geometric height) as input. For instance, to simply retrieve sea level properties, you can write:

>>> from ambiance import Atmosphere
>>> sealevel = Atmosphere(0)

>>> sealevel.temperature
array([288.15])

>>> sealevel.pressure
array([101325.])

>>> sealevel.kinematic_viscosity
array([1.46071857e-05])

List of available atmospheric properties

  • Collision frequency (collision_frequency)

  • Density (density)

  • Dynamic viscosity (dynamic_viscosity)

  • Geometric height above MSL (h)

  • Geopotential height (H)

  • Gravitational acceleration (grav_accel)

  • Kinematic viscosity (kinematic_viscosity)

  • Layer names (layer_name) [string array]

  • Mean free path (mean_free_path)

  • Mean particle speed (mean_particle_speed)

  • Number density (number_density)

  • Pressure (pressure)

  • Pressure scale height (pressure_scale_height)

  • Specific weight (specific_weight)

  • Speed of sound (speed_of_sound)

  • Temperature (temperature, temperature_in_celsius)

  • Thermal conductivity (thermal_conductivity)

Vector and matrix inputs

Ambiance also handles list-like input (list, tuples, Numpy arrays). The following code demonstrates how to produce a temperature plot with Matplotlib. In the example, Numpy’s linspace() function is used to produce an array with altitudes.

import numpy as np
import matplotlib.pyplot as plt
from ambiance import Atmosphere

# Create an atmosphere object
heights = np.linspace(-5e3, 80e3, num=1000)
atmosphere = Atmosphere(heights)

# Make plot
plt.plot(atmosphere.temperature_in_celsius, heights/1000)
plt.ylabel('Height [km]')
plt.xlabel('Temperature [°C]')
plt.grid()
plt.show()

The output is

Temperature plot

Similarly, you can also pass in entire matrices. Example:

>>> import numpy as np
>>> from ambiance import Atmosphere

>>> h = np.array([[0, 11, 12], [20, 21, 35], [0, 80, 50]])*1000
>>> h  # Geometric heights in metres
array([[    0, 11000, 12000],
       [20000, 21000, 35000],
       [    0, 80000, 50000]])

>>> Atmosphere(h).temperature
array([[288.15      , 216.7735127 , 216.65      ],
       [216.65      , 217.58085353, 236.51337209],
       [288.15      , 198.63857625, 270.65      ]])

>>> Atmosphere(h).speed_of_sound
array([[340.29398803, 295.15359145, 295.06949351],
       [295.06949351, 295.70270856, 308.29949587],
       [340.29398803, 282.53793156, 329.798731  ]])

>>> Atmosphere([30000, 0]).layer_name
array(['stratosphere', 'troposphere'], dtype='<U42')

Instantiating from given pressure or density

In some contexts it may be convenient to instantiate an Atmosphere object from a given ambient pressure or density. This can be easily achieved by using the Atmosphere.from_pressure() or Atmosphere.from_density() methods, respectively. Both methods return Atmosphere objects from which all other properties, like temperature, can be requested.

>>> Atmosphere.from_pressure([80e3, 20e3])  # 80 kPa and 20 kPa
Atmosphere(array([ 1949.58557497, 11805.91571135]))

>>> Atmosphere.from_pressure([80e3, 20e3]).pressure
array([80000., 20000.])

>>> Atmosphere.from_density(1.0)  # 1.0 kg/m^3
Atmosphere(array([2064.96635895]))

Complete user guide

For a comprehensive and detailed user guide, please see the complete documentation.

Installation

Conda

The package can be installed via the Conda environment with

conda install -c conda-forge ambiance
Conda Recipe Conda Downloads Conda Version

Requirements

Using Ambiance requires

  • Python 3.6 or higher

  • NumPy

  • SciPy

For developers: Recommended packages may be installed with the requirements.txt.

pip install -r requirements.txt

License

License: Apache-2.0

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ambiance-1.3.1.tar.gz (17.0 kB view details)

Uploaded Source

Built Distribution

ambiance-1.3.1-py3-none-any.whl (15.4 kB view details)

Uploaded Python 3

File details

Details for the file ambiance-1.3.1.tar.gz.

File metadata

  • Download URL: ambiance-1.3.1.tar.gz
  • Upload date:
  • Size: 17.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for ambiance-1.3.1.tar.gz
Algorithm Hash digest
SHA256 ceff180945a96996da5a3aceff2f2ff4f1ae67dadd24919675223c8e01d0a416
MD5 fc1905221fa0015ee9e09d3bfbc3a2df
BLAKE2b-256 de986ca0da97a869aed1375e0eaa7ecbc7d9dc1253065ebad3f33be339957ba2

See more details on using hashes here.

File details

Details for the file ambiance-1.3.1-py3-none-any.whl.

File metadata

  • Download URL: ambiance-1.3.1-py3-none-any.whl
  • Upload date:
  • Size: 15.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for ambiance-1.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 d7ccd04390e59727ffca5c54079586fe0b40419db5445b524db563a9405f015a
MD5 8e9673699cfbc8664bfbfcbb5548baa3
BLAKE2b-256 ebb7a9543c04d696a4bfe8a4959da6452f926c9766b3c27e9ef89db0a727965b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page