Skip to main content

Minimal, beautiful (+ highly-customizable) styles for Matplotlib.

Project description

ambivalent 🤷🏻‍

Sam Foreman 2024-05-13

opinionated $\longrightarrow$ ambivalent 🤷🏻‍

Clean, simple style for Matplotlib figures.

Transparent backgrounds with grey text $\textcolor{#838383}{\blacksquare}$ that are accessible / legible and {light, dark}-mode independent.

Install

python3 -m pip install ambivalent

Getting Started

import ambivalent
import matplotlib.pyplot as plt
plt.style.use(ambivalent.STYLES['ambivalent'])

Examples

seaborn Tips Dataset

Code
import seaborn as sns

tips = sns.load_dataset("tips")
tips.head()

fig, ax = plt.subplots(figsize=(6, 6))  # , ncols=2)

_ = sns.kdeplot(
   data=tips, x="total_bill", hue="size",
   fill=True, common_norm=False, palette="flare_r",
   alpha=.3, linewidth=0,
   ax=ax,  # [0],
)
_ = ax.set_ylabel('')
plt.show()

seaborn Scatter Plot

Code
import seaborn as sns
import matplotlib.pyplot as plt

# Load the example diamonds dataset
diamonds = sns.load_dataset("diamonds")

# Draw a scatter plot while assigning point colors and sizes to different
# variables in the dataset
f, ax = plt.subplots(figsize=(6, 6))
_ = sns.despine(f, left=True, bottom=True)
_ = clarity_ranking = ["I1", "SI2", "SI1", "VS2", "VS1", "VVS2", "VVS1", "IF"]
_ = sns.scatterplot(x="carat", y="price",
                hue="clarity", size="depth",
                palette="flare",
                hue_order=clarity_ranking,
                sizes=(1, 8), linewidth=0,
                data=diamonds, ax=ax)

Histogram + Scatter Plot

Code
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

# Simulate data from a bivariate Gaussian
n = 10000
mean = [0, 0]
cov = [(2, .4), (.4, .2)]
rng = np.random.RandomState(0)
x, y = rng.multivariate_normal(mean, cov, n).T

# Draw a combo histogram and scatterplot with density contours
f, ax = plt.subplots(figsize=(6, 6))
_ = sns.scatterplot(x=x, y=y, s=5, color="#666666", alpha=0.3)
_ = sns.histplot(x=x, y=y, bins=50, pthresh=.1, cmap="flare_r")
_ = sns.kdeplot(x=x, y=y, levels=5, color="w", linewidths=1)
_ = ax.set_xlabel('x')
_ = ax.set_ylabel('y')
_ = plt.show()

Jointplot

Code
import seaborn as sns
# Load the penguins dataset
penguins = sns.load_dataset("penguins")
# Show the joint distribution using kernel density estimation
import matplotlib as mpl
with mpl.rc_context(plt.rcParams.update({'axes.grid': False})):
  g = sns.jointplot(
      data=penguins,
      x="bill_length_mm",
      y="bill_depth_mm",
      hue="species",
      edgecolors='none',
      alpha=0.4,
  )
  _ = plt.grid(False)
  plt.show()

Matplotlib Histograms

Code
import matplotlib.pyplot as plt
import numpy as np

n_bins = 10
x = np.random.randn(1000, 3)

plt.rcParams['axes.grid'] = True

fig, ((ax0, ax1), (ax2, ax3)) = plt.subplots(nrows=2, ncols=2)

colors = ['#333333', '#666666', '#999999']
ax0.hist(x, n_bins, density=True, histtype='bar', color=colors, label=colors)
_ = ax0.legend()
_ = ax0.set_title('bars with legend')

_ = ax1.hist(x, n_bins, density=True, histtype='bar', stacked=True, alpha=0.4)
_ = ax1.set_title('stacked bar')

_ = ax2.hist(x, n_bins, histtype='step', stacked=True, fill=False)
_ = ax2.set_title('stack step (unfilled)')

# Make a multiple-histogram of data-sets with different length.
x_multi = [np.random.randn(n) for n in [10000, 5000, 2000]]
_ = ax3.hist(x_multi, n_bins, histtype='bar')
_ = ax3.set_title('different sample sizes')

_ = fig.tight_layout()
plt.show()

Gallery[^1]

More Examples…

|J_{f}|

|J_{b}|

|J|

[!TIP]

💝 Status

Last Updated: 05/13/2024 @ 21:56:28

[^1]: Examples from Matplotlib Examples

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ambivalent-0.3.0.tar.gz (91.3 MB view hashes)

Uploaded Source

Built Distribution

ambivalent-0.3.0-py3-none-any.whl (26.2 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page