Skip to main content

Open Neural Network Exchange

Project description

PyPI - Version CI CII Best Practices OpenSSF Scorecard REUSE compliant Ruff Black

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Currently we focus on the capabilities needed for inferencing (scoring).

ONNX is widely supported and can be found in many frameworks, tools, and hardware. Enabling interoperability between different frameworks and streamlining the path from research to production helps increase the speed of innovation in the AI community. We invite the community to join us and further evolve ONNX.

Use ONNX

Learn about the ONNX spec

Programming utilities for working with ONNX Graphs

Contribute

ONNX is a community project and the open governance model is described here. We encourage you to join the effort and contribute feedback, ideas, and code. You can participate in the Special Interest Groups and Working Groups to shape the future of ONNX.

Check out our contribution guide to get started.

If you think some operator should be added to ONNX specification, please read this document.

Community meetings

The schedules of the regular meetings of the Steering Committee, the working groups and the SIGs can be found here

Community Meetups are held at least once a year. Content from previous community meetups are at:

Discuss

We encourage you to open Issues, or use Slack (If you have not joined yet, please use this link to join the group) for more real-time discussion.

Follow Us

Stay up to date with the latest ONNX news. [Facebook] [Twitter]

Roadmap

A roadmap process takes place every year. More details can be found here

Installation

Official Python packages

ONNX released packages are published in PyPi.

pip install onnx  # or pip install onnx[reference] for optional reference implementation dependencies

ONNX weekly packages are published in PyPI to enable experimentation and early testing.

vcpkg packages

onnx is in the maintenance list of vcpkg, you can easily use vcpkg to build and install it.

git clone https://github.com/microsoft/vcpkg.git
cd vcpkg
./bootstrap-vcpkg.bat # For powershell
./bootstrap-vcpkg.sh # For bash
./vcpkg install onnx

Conda packages

A binary build of ONNX is available from Conda, in conda-forge:

conda install -c conda-forge onnx

Build ONNX from Source

Before building from source uninstall any existing versions of onnx pip uninstall onnx.

c++17 or higher C++ compiler version is required to build ONNX from source. Still, users can specify their own CMAKE_CXX_STANDARD version for building ONNX.

If you don't have protobuf installed, ONNX will internally download and build protobuf for ONNX build.

Or, you can manually install protobuf C/C++ libraries and tools with specified version before proceeding forward. Then depending on how you installed protobuf, you need to set environment variable CMAKE_ARGS to "-DONNX_USE_PROTOBUF_SHARED_LIBS=ON" or "-DONNX_USE_PROTOBUF_SHARED_LIBS=OFF". For example, you may need to run the following command:

Linux:

export CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

Windows:

set CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

The ON/OFF depends on what kind of protobuf library you have. Shared libraries are files ending with *.dll/*.so/*.dylib. Static libraries are files ending with *.a/*.lib. This option depends on how you get your protobuf library and how it was built. And it is default OFF. You don't need to run the commands above if you'd prefer to use a static protobuf library.

Windows

If you are building ONNX from source, it is recommended that you also build Protobuf locally as a static library. The version distributed with conda-forge is a DLL, but ONNX expects it to be a static library. Building protobuf locally also lets you control the version of protobuf. The tested and recommended version is 3.21.12.

The instructions in this README assume you are using Visual Studio. It is recommended that you run all the commands from a shell started from "x64 Native Tools Command Prompt for VS 2019" and keep the build system generator for cmake (e.g., cmake -G "Visual Studio 16 2019") consistent while building protobuf as well as ONNX.

You can get protobuf by running the following commands:

git clone https://github.com/protocolbuffers/protobuf.git
cd protobuf
git checkout v21.12
cd cmake
cmake -G "Visual Studio 16 2019" -A x64 -DCMAKE_INSTALL_PREFIX=<protobuf_install_dir> -Dprotobuf_MSVC_STATIC_RUNTIME=OFF -Dprotobuf_BUILD_SHARED_LIBS=OFF -Dprotobuf_BUILD_TESTS=OFF -Dprotobuf_BUILD_EXAMPLES=OFF .
msbuild protobuf.sln /m /p:Configuration=Release
msbuild INSTALL.vcxproj /p:Configuration=Release

Then it will be built as a static library and installed to <protobuf_install_dir>. Please add the bin directory(which contains protoc.exe) to your PATH.

set CMAKE_PREFIX_PATH=<protobuf_install_dir>;%CMAKE_PREFIX_PATH%

Please note: if your protobuf_install_dir contains spaces, do not add quotation marks around it.

Alternative: if you don't want to change your PATH, you can set ONNX_PROTOC_EXECUTABLE instead.

set CMAKE_ARGS=-DONNX_PROTOC_EXECUTABLE=<full_path_to_protoc.exe>

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Linux

First, you need to install protobuf. The minimum Protobuf compiler (protoc) version required by ONNX is 3.6.1. Please note that old protoc versions might not work with CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON.

Ubuntu 20.04 (and newer) users may choose to install protobuf via

apt-get install python3-pip python3-dev libprotobuf-dev protobuf-compiler

In this case, it is required to add -DONNX_USE_PROTOBUF_SHARED_LIBS=ON to CMAKE_ARGS in the ONNX build step.

A more general way is to build and install it from source. See the instructions below for more details.

Installing Protobuf from source

Debian/Ubuntu:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v21.12
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

CentOS/RHEL/Fedora:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v21.12
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake  -DCMAKE_INSTALL_LIBDIR=lib64 -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

Here "-DCMAKE_POSITION_INDEPENDENT_CODE=ON" is crucial. By default static libraries are built without "-fPIC" flag, they are not position independent code. But shared libraries must be position independent code. Python C/C++ extensions(like ONNX) are shared libraries. So if a static library was not built with "-fPIC", it can't be linked to such a shared library.

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# Optional: prefer lite proto
export CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Mac

export NUM_CORES=`sysctl -n hw.ncpu`
brew update
brew install autoconf && brew install automake
wget https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protobuf-cpp-3.21.12.tar.gz
tar -xvf protobuf-cpp-3.21.12.tar.gz
cd protobuf-3.21.12
mkdir build_source && cd build_source
cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
make -j${NUM_CORES}
make install

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone --recursive https://github.com/onnx/onnx.git
cd onnx
# Optional: prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Verify Installation

After installation, run

python -c "import onnx"

to verify it works.

Common Build Options

For full list refer to CMakeLists.txt

Environment variables

  • USE_MSVC_STATIC_RUNTIME should be 1 or 0, not ON or OFF. When set to 1 onnx links statically to runtime library. Default: USE_MSVC_STATIC_RUNTIME=0

  • DEBUG should be 0 or 1. When set to 1 onnx is built in debug mode. or debug versions of the dependencies, you need to open the CMakeLists file and append a letter d at the end of the package name lines. For example, NAMES protobuf-lite would become NAMES protobuf-lited. Default: Debug=0

CMake variables

  • ONNX_USE_PROTOBUF_SHARED_LIBS should be ON or OFF. Default: ONNX_USE_PROTOBUF_SHARED_LIBS=OFF USE_MSVC_STATIC_RUNTIME=0 ONNX_USE_PROTOBUF_SHARED_LIBS determines how onnx links to protobuf libraries.

    • When set to ON - onnx will dynamically link to protobuf shared libs, PROTOBUF_USE_DLLS will be defined as described here, Protobuf_USE_STATIC_LIBS will be set to OFF and USE_MSVC_STATIC_RUNTIME must be 0.
    • When set to OFF - onnx will link statically to protobuf, and Protobuf_USE_STATIC_LIBS will be set to ON (to force the use of the static libraries) and USE_MSVC_STATIC_RUNTIME can be 0 or 1.
  • ONNX_USE_LITE_PROTO should be ON or OFF. When set to ON onnx uses lite protobuf instead of full protobuf. Default: ONNX_USE_LITE_PROTO=OFF

  • ONNX_WERROR should be ON or OFF. When set to ON warnings are treated as errors. Default: ONNX_WERROR=OFF in local builds, ON in CI and release pipelines.

Common Errors

  • Note: the import onnx command does not work from the source checkout directory; in this case you'll see ModuleNotFoundError: No module named 'onnx.onnx_cpp2py_export'. Change into another directory to fix this error.

  • If you run into any issues while building Protobuf as a static library, please ensure that shared Protobuf libraries, like libprotobuf, are not installed on your device or in the conda environment. If these shared libraries exist, either remove them to build Protobuf from source as a static library, or skip the Protobuf build from source to use the shared version directly.

  • If you run into any issues while building ONNX from source, and your error message reads, Could not find pythonXX.lib, ensure that you have consistent Python versions for common commands, such as python and pip. Clean all existing build files and rebuild ONNX again.

Testing

ONNX uses pytest as test driver. In order to run tests, you will first need to install pytest:

pip install pytest nbval

After installing pytest, use the following command to run tests.

pytest

Development

Check out the contributor guide for instructions.

License

Apache License v2.0

Code of Conduct

ONNX Open Source Code of Conduct

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

amd_onnx-1.17.0-cp312-cp312-win_amd64.whl (14.5 MB view details)

Uploaded CPython 3.12 Windows x86-64

amd_onnx-1.17.0-cp312-cp312-win32.whl (14.4 MB view details)

Uploaded CPython 3.12 Windows x86

amd_onnx-1.17.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

amd_onnx-1.17.0-cp312-cp312-macosx_11_0_universal2.whl (16.7 MB view details)

Uploaded CPython 3.12 macOS 11.0+ universal2 (ARM64, x86-64)

amd_onnx-1.17.0-cp311-cp311-win_amd64.whl (14.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

amd_onnx-1.17.0-cp311-cp311-win32.whl (14.4 MB view details)

Uploaded CPython 3.11 Windows x86

amd_onnx-1.17.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

amd_onnx-1.17.0-cp311-cp311-macosx_11_0_universal2.whl (16.7 MB view details)

Uploaded CPython 3.11 macOS 11.0+ universal2 (ARM64, x86-64)

amd_onnx-1.17.0-cp310-cp310-win_amd64.whl (14.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

amd_onnx-1.17.0-cp310-cp310-win32.whl (14.4 MB view details)

Uploaded CPython 3.10 Windows x86

amd_onnx-1.17.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

amd_onnx-1.17.0-cp310-cp310-macosx_11_0_universal2.whl (16.7 MB view details)

Uploaded CPython 3.10 macOS 11.0+ universal2 (ARM64, x86-64)

amd_onnx-1.17.0-cp39-cp39-win_amd64.whl (14.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

amd_onnx-1.17.0-cp39-cp39-win32.whl (14.4 MB view details)

Uploaded CPython 3.9 Windows x86

amd_onnx-1.17.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

amd_onnx-1.17.0-cp39-cp39-macosx_11_0_universal2.whl (16.7 MB view details)

Uploaded CPython 3.9 macOS 11.0+ universal2 (ARM64, x86-64)

amd_onnx-1.17.0-cp38-cp38-win_amd64.whl (14.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

amd_onnx-1.17.0-cp38-cp38-win32.whl (14.4 MB view details)

Uploaded CPython 3.8 Windows x86

amd_onnx-1.17.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

amd_onnx-1.17.0-cp38-cp38-macosx_11_0_universal2.whl (16.7 MB view details)

Uploaded CPython 3.8 macOS 11.0+ universal2 (ARM64, x86-64)

File details

Details for the file amd_onnx-1.17.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx-1.17.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 8edb0085129bc36fabb168174ed631cc7c313d97e54a3ba2e57ab5d56ea6f3ed
MD5 f0cb7e898ac1a2519b4e4f8dc6fb349f
BLAKE2b-256 cdcad0712b6f80db779174eede3e13e791e97ed86c5dfc3778bc4e8dd17ea8b1

See more details on using hashes here.

File details

Details for the file amd_onnx-1.17.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: amd_onnx-1.17.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 14.4 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for amd_onnx-1.17.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 a5c72b54f21e51c206b4c1065b6f619a220e29a3b4529e8396344d8b328cf146
MD5 ff79e9f85e416625b73b1ce88a67a924
BLAKE2b-256 b4dbea4ad2cc8fb26c6ccc73304b9de3c7617fa3c1b0b8bc798361057e4616e7

See more details on using hashes here.

File details

Details for the file amd_onnx-1.17.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx-1.17.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a8589847f0170bf95ff43e4e3560b93d93095c919993c9c3ab3efb3350f0b576
MD5 9815e469ab97e49db9d67fadc21f21ea
BLAKE2b-256 3754f415a4e4cf81ac2619f321179896563b8d529f1e3bebb56f9b06004262bb

See more details on using hashes here.

File details

Details for the file amd_onnx-1.17.0-cp312-cp312-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx-1.17.0-cp312-cp312-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 4861638033aa71d7984535ee2766abfb74fcdcbe62bfe0ac3f93d22a7294f346
MD5 e7400dcc5af8982112ddb86b085f868b
BLAKE2b-256 be23d6cfd9e65bf9daac74ca416f15d0c96e2a68ad89d59468ceed5221a2f792

See more details on using hashes here.

File details

Details for the file amd_onnx-1.17.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx-1.17.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 cd5c71f433de717df3386300251e6541856a854ae4dc208622d79d598f0e0368
MD5 2c7fac9ad7e8a4dd3a252703f1d0ed6c
BLAKE2b-256 b25a55af4c2cbc5d7055d1fb01f59967ca73ee80c8c02f47bc35d17d8f960526

See more details on using hashes here.

File details

Details for the file amd_onnx-1.17.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: amd_onnx-1.17.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 14.4 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.9

File hashes

Hashes for amd_onnx-1.17.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 ba1fbc8e42e8d117cca25d171c45b4db62342eab004d552ccb0c5e9e4910e81c
MD5 e94f7dba6b87e566207c7e2641647875
BLAKE2b-256 b58c0a102b52edcf31e82bd8ba5230f7684c9eacdb6d85552d1a29780e264e91

See more details on using hashes here.

File details

Details for the file amd_onnx-1.17.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx-1.17.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9e6cdaaa481a222a9a8a9dccf0a182ffb8cb93ecdc2b48198faef348ddee2b8e
MD5 f05642f14654886bfea6a0c0598257b6
BLAKE2b-256 27f50d711f448a6fdcaf34e40ae6ca4554b4077d737f529428f1d93122ab65b2

See more details on using hashes here.

File details

Details for the file amd_onnx-1.17.0-cp311-cp311-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx-1.17.0-cp311-cp311-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 7c10a69a976465aa8ae85db1b39b3e1d0efb01df42257fe330cd6fdcfe46a4df
MD5 80ce8f970c37aeaaa4f522428edee7cb
BLAKE2b-256 d5b34e9cb297cf40bcfbbc76cccadd5d6091812fb9a4fc065a513e5edddcef94

See more details on using hashes here.

File details

Details for the file amd_onnx-1.17.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx-1.17.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 0305c2500a1b1d9373e500ccd1250b1bfe54f06fb44b4e93480bdbc38d75dbc0
MD5 85d075cdcaf61776e7b736b09f998944
BLAKE2b-256 1c948fecfb6ba3637dbf55c170dba43e96a34300893399e6a06adb53f60b63e4

See more details on using hashes here.

File details

Details for the file amd_onnx-1.17.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: amd_onnx-1.17.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 14.4 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.11

File hashes

Hashes for amd_onnx-1.17.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 b9b3ed94856f191c86eb835f0e5971f54541e3137ebf78ad7e361548e1f2390b
MD5 affa00ebcb33fa99acd73910367d6b6b
BLAKE2b-256 cf37d9c264dc16800ca4008a181c1b20636da8aebc4079a40c912238f9f6c000

See more details on using hashes here.

File details

Details for the file amd_onnx-1.17.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx-1.17.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4d20f0ead83c00f2691fe167dbba077f93a7feb5c38827a75e8230e3430bc4b4
MD5 e0d8f5742eef61aca05c2389caf873ce
BLAKE2b-256 203f58c4771062ad60d76b3ccde57e24e9f640b76b1ef396adebe02bd1e0469e

See more details on using hashes here.

File details

Details for the file amd_onnx-1.17.0-cp310-cp310-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx-1.17.0-cp310-cp310-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 a9185cad58ebf13dfd00795885049d9b9998bc7faaae97aeb2d7a3efaaa1b146
MD5 10d5252767e06db717383611b343ee51
BLAKE2b-256 daedf786991c52ee5d7d708518c841229438d7b7844e352c7a46f4fcfc0629a5

See more details on using hashes here.

File details

Details for the file amd_onnx-1.17.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: amd_onnx-1.17.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 14.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.13

File hashes

Hashes for amd_onnx-1.17.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 50195dc0c5f5b3abe452c39a277f22ab2ad187db24b0348393bf1926cd92653c
MD5 6a374a5acce460d9b79b1fab82309cdb
BLAKE2b-256 478d5a64718d25f8a5911dd8a96b6fbdbe9a95d46dab42b35e1e71559ed6655f

See more details on using hashes here.

File details

Details for the file amd_onnx-1.17.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: amd_onnx-1.17.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 14.4 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.13

File hashes

Hashes for amd_onnx-1.17.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 dd7b87034b7b8d38ad71d5e41089ab65108c8856c8332a8839e366d36edac2f1
MD5 207e69169b9dd07bd5c28a97627ee241
BLAKE2b-256 0b124a9b9309cba40687273790c0f208bc614f01bf271309f78fc15ee9ec4be8

See more details on using hashes here.

File details

Details for the file amd_onnx-1.17.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx-1.17.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9de22b58c1b2099d96823331e5cbb0661a398e5f3a77e5bef509a978c5ef41bd
MD5 c966d807a502b1d09e16d697385c8e94
BLAKE2b-256 30176ae703a482bc372440b7abcfeef502fbbc1160f797ab8095f6f8318828a8

See more details on using hashes here.

File details

Details for the file amd_onnx-1.17.0-cp39-cp39-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx-1.17.0-cp39-cp39-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 52c3dda2c707b3ee1b70f97de6dad456812b9643c3cc31f45ea2da83ebcb3026
MD5 9e0e58fb270bf0c84c6a0ec51ac20415
BLAKE2b-256 fab35086e536a4b4e3dc6b86bdeaf83d9d36fd87eebcf5ad01cde4e2f0eadec2

See more details on using hashes here.

File details

Details for the file amd_onnx-1.17.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: amd_onnx-1.17.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 14.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.10

File hashes

Hashes for amd_onnx-1.17.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 546fead4d753e9f3b19b38c8f38426021057eb8563f56e07b681407da74241c5
MD5 6f33cc62d1fc083e795fca89c7a5bd0b
BLAKE2b-256 1dbb51f491dea94470dfb4241c4828baa34c692f48e8a92cc68fec5c3445a6cc

See more details on using hashes here.

File details

Details for the file amd_onnx-1.17.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: amd_onnx-1.17.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 14.4 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.10

File hashes

Hashes for amd_onnx-1.17.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 12c56dc63a80c13ef36f8bb6345b49b977ee735b2344acdd8b2131fd2443b645
MD5 47e3e1bb0e3d655924052f3960944af8
BLAKE2b-256 de70469528aad5166460e8271e2ded9a28134aa6bc6002be5b4390a1b1ea892e

See more details on using hashes here.

File details

Details for the file amd_onnx-1.17.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx-1.17.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aec81b973b95614122e4d2dc29cd7835a2fc543b99cfc8cf990f52e97f66d704
MD5 21509443f265a85dca239b2330addb13
BLAKE2b-256 a9a402d0cb06af34ef56d2ea582553caf68f6d99675e3d93fa36df99bdeab26a

See more details on using hashes here.

File details

Details for the file amd_onnx-1.17.0-cp38-cp38-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx-1.17.0-cp38-cp38-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 b3473c5a5d51189e93403baf0f9733799e9976de37b07bde9ded9458d9a94d72
MD5 7552935ecb81ff470ecf4e15777300e3
BLAKE2b-256 972f1d71d4e522aaa7d9767934cb3fd518c9ad358e5e8ffa4ab8035f69d2af7d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page