Skip to main content

Open Neural Network Exchange

Project description

PyPI - Version CI CII Best Practices OpenSSF Scorecard REUSE compliant Ruff Black

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Currently we focus on the capabilities needed for inferencing (scoring).

ONNX is widely supported and can be found in many frameworks, tools, and hardware. Enabling interoperability between different frameworks and streamlining the path from research to production helps increase the speed of innovation in the AI community. We invite the community to join us and further evolve ONNX.

Use ONNX

Learn about the ONNX spec

Programming utilities for working with ONNX Graphs

Contribute

ONNX is a community project and the open governance model is described here. We encourage you to join the effort and contribute feedback, ideas, and code. You can participate in the Special Interest Groups and Working Groups to shape the future of ONNX.

Check out our contribution guide to get started.

If you think some operator should be added to ONNX specification, please read this document.

Community meetings

The schedules of the regular meetings of the Steering Committee, the working groups and the SIGs can be found here

Community Meetups are held at least once a year. Content from previous community meetups are at:

Discuss

We encourage you to open Issues, or use Slack (If you have not joined yet, please use this link to join the group) for more real-time discussion.

Follow Us

Stay up to date with the latest ONNX news. [Facebook] [Twitter]

Roadmap

A roadmap process takes place every year. More details can be found here

Installation

Official Python packages

ONNX released packages are published in PyPi.

pip install onnx  # or pip install onnx[reference] for optional reference implementation dependencies

AMD's ONNX weekly packages are published in PyPI to enable experimentation and early testing.

vcpkg packages

ONNX is in the maintenance list of vcpkg, you can easily use vcpkg to build and install it.

git clone https://github.com/microsoft/vcpkg.git
cd vcpkg
./bootstrap-vcpkg.bat # For powershell
./bootstrap-vcpkg.sh # For bash
./vcpkg install onnx

Conda packages

A binary build of ONNX is available from Conda, in conda-forge:

conda install -c conda-forge onnx

Build ONNX from Source

Before building from source uninstall any existing versions of ONNX pip uninstall onnx.

C++17 or higher C++ compiler version is required to build ONNX from source. Still, users can specify their own CMAKE_CXX_STANDARD version for building ONNX.

If you don't have protobuf installed, ONNX will internally download and build protobuf for ONNX build.

Or, you can manually install protobuf C/C++ libraries and tools with specified version before proceeding forward. Then depending on how you installed protobuf, you need to set environment variable CMAKE_ARGS to "-DONNX_USE_PROTOBUF_SHARED_LIBS=ON" or "-DONNX_USE_PROTOBUF_SHARED_LIBS=OFF". For example, you may need to run the following command:

Linux:

export CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

Windows:

set CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

The ON/OFF depends on what kind of protobuf library you have. Shared libraries are files ending with *.dll/*.so/*.dylib. Static libraries are files ending with *.a/*.lib. This option depends on how you get your protobuf library and how it was built. And it is default OFF. You don't need to run the commands above if you'd prefer to use a static protobuf library.

Windows

If you are building ONNX from source, it is recommended that you also build Protobuf locally as a static library. The version distributed with conda-forge is a DLL, but ONNX expects it to be a static library. Building protobuf locally also lets you control the version of protobuf. The tested and recommended version is 3.21.12.

The instructions in this README assume you are using Visual Studio. It is recommended that you run all the commands from a shell started from "x64 Native Tools Command Prompt for VS 2019" and keep the build system generator for cmake (e.g., cmake -G "Visual Studio 16 2019") consistent while building protobuf as well as ONNX.

You can get protobuf by running the following commands:

git clone https://github.com/protocolbuffers/protobuf.git
cd protobuf
git checkout v21.12
cd cmake
cmake -G "Visual Studio 16 2019" -A x64 -DCMAKE_INSTALL_PREFIX=<protobuf_install_dir> -Dprotobuf_MSVC_STATIC_RUNTIME=OFF -Dprotobuf_BUILD_SHARED_LIBS=OFF -Dprotobuf_BUILD_TESTS=OFF -Dprotobuf_BUILD_EXAMPLES=OFF .
msbuild protobuf.sln /m /p:Configuration=Release
msbuild INSTALL.vcxproj /p:Configuration=Release

Then it will be built as a static library and installed to <protobuf_install_dir>. Please add the bin directory(which contains protoc.exe) to your PATH.

set CMAKE_PREFIX_PATH=<protobuf_install_dir>;%CMAKE_PREFIX_PATH%

Please note: if your protobuf_install_dir contains spaces, do not add quotation marks around it.

Alternative: if you don't want to change your PATH, you can set ONNX_PROTOC_EXECUTABLE instead.

set CMAKE_ARGS=-DONNX_PROTOC_EXECUTABLE=<full_path_to_protoc.exe>

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Linux

First, you need to install protobuf. The minimum Protobuf compiler (protoc) version required by ONNX is 3.6.1. Please note that old protoc versions might not work with CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON.

Ubuntu 20.04 (and newer) users may choose to install protobuf via

apt-get install python3-pip python3-dev libprotobuf-dev protobuf-compiler

In this case, it is required to add -DONNX_USE_PROTOBUF_SHARED_LIBS=ON to CMAKE_ARGS in the ONNX build step.

A more general way is to build and install it from source. See the instructions below for more details.

Installing Protobuf from source

Debian/Ubuntu:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v21.12
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

CentOS/RHEL/Fedora:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v21.12
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake  -DCMAKE_INSTALL_LIBDIR=lib64 -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

Here "-DCMAKE_POSITION_INDEPENDENT_CODE=ON" is crucial. By default static libraries are built without "-fPIC" flag, they are not position independent code. But shared libraries must be position independent code. Python C/C++ extensions(like ONNX) are shared libraries. So if a static library was not built with "-fPIC", it can't be linked to such a shared library.

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# Optional: prefer lite proto
export CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Mac

export NUM_CORES=`sysctl -n hw.ncpu`
brew update
brew install autoconf && brew install automake
wget https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protobuf-cpp-3.21.12.tar.gz
tar -xvf protobuf-cpp-3.21.12.tar.gz
cd protobuf-3.21.12
mkdir build_source && cd build_source
cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
make -j${NUM_CORES}
make install

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone --recursive https://github.com/onnx/onnx.git
cd onnx
# Optional: prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Verify Installation

After installation, run

python -c "import onnx"

to verify it works.

Common Build Options

For full list refer to CMakeLists.txt

Environment variables

  • USE_MSVC_STATIC_RUNTIME should be 1 or 0, not ON or OFF. When set to 1 ONNX links statically to runtime library. Default: USE_MSVC_STATIC_RUNTIME=0

  • DEBUG should be 0 or 1. When set to 1 ONNX is built in debug mode. or debug versions of the dependencies, you need to open the CMakeLists file and append a letter d at the end of the package name lines. For example, NAMES protobuf-lite would become NAMES protobuf-lited. Default: Debug=0

CMake variables

  • ONNX_USE_PROTOBUF_SHARED_LIBS should be ON or OFF. Default: ONNX_USE_PROTOBUF_SHARED_LIBS=OFF USE_MSVC_STATIC_RUNTIME=0 ONNX_USE_PROTOBUF_SHARED_LIBS determines how ONNX links to protobuf libraries.

    • When set to ON - ONNX will dynamically link to protobuf shared libs, PROTOBUF_USE_DLLS will be defined as described here.
    • When set to OFF - ONNX will link statically to protobuf.
  • ONNX_USE_LITE_PROTO should be ON or OFF. When set to ON ONNX uses lite protobuf instead of full protobuf. Default: ONNX_USE_LITE_PROTO=OFF

  • ONNX_WERROR should be ON or OFF. When set to ON warnings are treated as errors. Default: ONNX_WERROR=OFF in local builds, ON in CI and release pipelines.

Common Errors

  • Note: the import onnx command does not work from the source checkout directory; in this case you'll see ModuleNotFoundError: No module named 'onnx.onnx_cpp2py_export'. Change into another directory to fix this error.

  • If you run into any issues while building Protobuf as a static library, please ensure that shared Protobuf libraries, like libprotobuf, are not installed on your device or in the conda environment. If these shared libraries exist, either remove them to build Protobuf from source as a static library, or skip the Protobuf build from source to use the shared version directly.

  • If you run into any issues while building ONNX from source, and your error message reads, Could not find pythonXX.lib, ensure that you have consistent Python versions for common commands, such as python and pip. Clean all existing build files and rebuild ONNX again.

Testing

ONNX uses pytest as test driver. In order to run tests, you will first need to install pytest:

pip install pytest nbval

After installing pytest, use the following command to run tests.

pytest

Development

Check out the contributor guide for instructions.

License

Apache License v2.0

Code of Conduct

ONNX Open Source Code of Conduct

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

amd_onnx_weekly-1.18.0.dev20241118-cp313-cp313-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.13 Windows x86-64

amd_onnx_weekly-1.18.0.dev20241118-cp313-cp313-win32.whl (14.4 MB view details)

Uploaded CPython 3.13 Windows x86

amd_onnx_weekly-1.18.0.dev20241118-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20241118-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20241118-cp312-cp312-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

amd_onnx_weekly-1.18.0.dev20241118-cp312-cp312-win32.whl (14.4 MB view details)

Uploaded CPython 3.12 Windows x86

amd_onnx_weekly-1.18.0.dev20241118-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20241118-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20241118-cp311-cp311-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

amd_onnx_weekly-1.18.0.dev20241118-cp311-cp311-win32.whl (14.4 MB view details)

Uploaded CPython 3.11 Windows x86

amd_onnx_weekly-1.18.0.dev20241118-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20241118-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20241118-cp310-cp310-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

amd_onnx_weekly-1.18.0.dev20241118-cp310-cp310-win32.whl (14.4 MB view details)

Uploaded CPython 3.10 Windows x86

amd_onnx_weekly-1.18.0.dev20241118-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20241118-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20241118-cp39-cp39-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

amd_onnx_weekly-1.18.0.dev20241118-cp39-cp39-win32.whl (14.4 MB view details)

Uploaded CPython 3.9 Windows x86

amd_onnx_weekly-1.18.0.dev20241118-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20241118-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20241118-cp38-cp38-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

amd_onnx_weekly-1.18.0.dev20241118-cp38-cp38-win32.whl (14.4 MB view details)

Uploaded CPython 3.8 Windows x86

amd_onnx_weekly-1.18.0.dev20241118-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20241118-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241118-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241118-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 2066b07ba74129df37d00f352e9b165907d639fdf0e30da57d3ba1bd1081f28f
MD5 3f1ac327e640954f04ef5828ce315f84
BLAKE2b-256 b34026e15274e19391afeb51078a2e1cb5547192985867957f415cd9ed456328

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241118-cp313-cp313-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241118-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 3fd4313d2083c94c6d487f9cb9a6affd17c4658240f3a58f63512b44cbabcf22
MD5 dc2acb82acf18eacb2d3a5b67c20c9f0
BLAKE2b-256 211cf4d1dd549c1936ddb02e3b15c37b6a9a2f9bb9c07d4a95d1d9b2f894230e

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241118-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241118-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 511067beaa27d3edb10bda7ffcc907e187b8ad7d370f69dab86f8cdc161e588c
MD5 d48c238f720095bb86173d4b0b52d7e4
BLAKE2b-256 0ec174d0d307b85d1867ca289f8358e62993f08f65b6babaff7341890bceb46a

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241118-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241118-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0491d4499c8cf33dfba36af6b791b07860209f3eb381abe86bfd004a0f20ef70
MD5 88aab4776823a9409f6ac0cec4bbd602
BLAKE2b-256 a44ccc89bc7bc2bf86355539feb37b3b331e2527dd42b9c3852424cc5c82ea4d

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241118-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241118-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 d16a5011ee41511bd5ade9724a62801ac48748ac9f5c11e970e6e4070742ee5c
MD5 68c3f9a231f03bb1967b2af90db6781a
BLAKE2b-256 fb4f2b927330c6822c841e8777d8ffa8eb2ef026146626c07d23055e6bf426d6

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241118-cp312-cp312-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241118-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 4d3da7bf992ec886b9349f9b7579de14cebf612fbcf4c28ecab1dccea47e74fb
MD5 9fe4513a4992ad704e283515e8ec459a
BLAKE2b-256 e62f2583c3a299744eb107d84e182cb92f924c8ff7cf60adbb0d05fdacbf4dc8

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241118-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241118-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a8a515e42ca404541aa33c6fff71d79fcafa5d0df79e4ae795faddba7e6af8d3
MD5 d87e360a05c1679a1819044a4e7562d7
BLAKE2b-256 6de8936318c759411bb3eb8cef3bbf2133805ebace50d382a3bb65980f7f0f0a

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241118-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241118-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 638485696744385373c34ecc7c6ef288dd99fd506f17b74b9c3b5feeaff84db0
MD5 6aca66b0aae1c13375ca6f8a1d52b72a
BLAKE2b-256 1a2b883a44e097dabae15230babefb843a0d255608bd4ba23cb57aba9844536f

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241118-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241118-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 0e0f017bed9d7294c536a514a3b05f345aa92259b1f7eea59fd13b4c9bc6e5db
MD5 a79f942c391b8f685c1551ed2135baa4
BLAKE2b-256 14b28d237a2129153b8b61e38388677ebe3ef54ac755bc0a0dfe070c844af81b

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241118-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241118-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 81705b832ee62d0ae3cbdcaa77a0f5694d2afa09914ede5a1f3f65c98f0d36be
MD5 1376dabb1e9748e216c5de99958f442b
BLAKE2b-256 c17af656fb453f2a66853987bd96e87b3d2cbdaa648fa20d00d70e01b92a4ffd

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241118-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241118-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e3c0240a73526eb906494dde4abe757f968e2d1fb4b0f4927bfe4d78f02a0bd0
MD5 5b63f81f85457dac72820d92a1533ffd
BLAKE2b-256 0e85f06ff4ef3b52b34e22ab1e9d060d598315324530b0f9678018ed1d5eb20c

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241118-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241118-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a4ac7a22d8c60ed207bed8db442d6d37fea69c2e40b11d132281e38e4c93a41a
MD5 19c1122c0f23f7283d764f2d14590238
BLAKE2b-256 930a5cf33b292dacba5a37c1a7d960d1fedf6d4f83e8e7bb8049c1291a451e91

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241118-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241118-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 6b5afc57211954c413e5894a562945a6e74e1c0a74b1ebb4c80f1ab065bc6b17
MD5 794e9f917e382adede0edcdc4ea5e33d
BLAKE2b-256 d265d36a5ecf1358a9e09bc19a41d446b833cdce9865376e0f1d820d7709906c

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241118-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241118-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 eacceafc3fe86a743c8ab27ed6a02a071469bf00353c1475c652f9013b11649c
MD5 2a95e8e75b8f02a35a62ba151b0bb64a
BLAKE2b-256 a772e58d1f55f951fdb588806769bf7efdfcfcd743b2cec252038d1c4a1a8e86

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241118-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241118-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9c300fc60608215f9b34a7d68f246cd4392e737fdfc503f711735eae3480bbe6
MD5 a19eb04dde6fa1818c2185d9be61155e
BLAKE2b-256 a8328b590a22727cf8c042472180752c8d59969e30a9b9742db76e584e70af17

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241118-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241118-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ab07a17a0173e92beaac18af4091239defb9752e9fd019677a0d3d21bb590de9
MD5 3e825abccf21fde3f3787e4142544cfb
BLAKE2b-256 a97dbc644c20c167d49140d73b89544ca56adacebc61407584f01b3067e7d951

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241118-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241118-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 903a7314f4ccf9311d97bd3b031eeb45e2e36372412b3363eefab4a8ce8136f7
MD5 f7c795e2d667d1096fbb0b0daf8a7d79
BLAKE2b-256 5c129c0b38e4ce1ad6171268ca392beddf516b7d252bc3d93fbb683358624b7b

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241118-cp39-cp39-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241118-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 0bfcb1bcf74533d0ba964c52d29dfb96d466e46c269b63185bc68c41c6082af2
MD5 a64383a03108e3f704df73751cb3d690
BLAKE2b-256 5cc2d59ede3dd86b5da7ad124b251051adbd16c6e8da3154a5ffee8d1a4061dd

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241118-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241118-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4df770d8c23eed8e23630d9b22e3a23bbd206ebef6d1ea78956322a5dcef19f1
MD5 b8212b878741b809bac38239e08a2d15
BLAKE2b-256 357e86f21d7addcd94d2243b580523060afd7cd2736580f89a6b7a961890c557

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241118-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241118-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5edd7a46e8ee02aa95b7e117a3eb997d1c3b98263572d5802869973c705f42e1
MD5 054a50cae55d9dbb20ee41e242bfd33c
BLAKE2b-256 2c9b924943a74ef500e070d56774907dfe61d9e4983062fa96365934f962a17a

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241118-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241118-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c4be63c174945391d0cb0c910e53fb9a33ae7fdfd3ced9f320f5ba98fe191ed1
MD5 d41c17ee03bdab86a6ddf65603dfb89a
BLAKE2b-256 4115fb8205087d9468897969d4c33d5914a59b1ea0768dcf4ef4156d71a60049

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241118-cp38-cp38-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241118-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 9283cada35bdfa527840ec7c21bf8f3e7a77ae121abd9d2c5f418e2ed1068197
MD5 92a4501a4257fb2668d06e9b972c8f1b
BLAKE2b-256 b148992ac68d8825c9f9557b94a70fc5667dc16d8024e6a970dcec0004d24e4a

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241118-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241118-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 04c0c7e03b88e5590b11b153d79ef59f2188a2b9a76da504ef3078409db72ecf
MD5 3a783f51e239af7f77c92c39297cc97a
BLAKE2b-256 48138caf81b7e8a1e01487f4121e2e531291a9c82239d0c4322f809ee11ac356

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241118-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241118-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a981c03201e4ee8c1a3846d49ab674b80b4c137adacaa87bbef0b8bba2bbbfc3
MD5 349c9ae246527c416cb0702511aa23e7
BLAKE2b-256 6e76e968613894c89c6c791fc2007e20cd5ca4a0526e8ad4089c6a5db0ebde0f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page