Skip to main content

Open Neural Network Exchange

Project description

PyPI - Version CI CII Best Practices OpenSSF Scorecard REUSE compliant Ruff Black

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Currently we focus on the capabilities needed for inferencing (scoring).

ONNX is widely supported and can be found in many frameworks, tools, and hardware. Enabling interoperability between different frameworks and streamlining the path from research to production helps increase the speed of innovation in the AI community. We invite the community to join us and further evolve ONNX.

Use ONNX

Learn about the ONNX spec

Programming utilities for working with ONNX Graphs

Contribute

ONNX is a community project and the open governance model is described here. We encourage you to join the effort and contribute feedback, ideas, and code. You can participate in the Special Interest Groups and Working Groups to shape the future of ONNX.

Check out our contribution guide to get started.

If you think some operator should be added to ONNX specification, please read this document.

Community meetings

The schedules of the regular meetings of the Steering Committee, the working groups and the SIGs can be found here

Community Meetups are held at least once a year. Content from previous community meetups are at:

Discuss

We encourage you to open Issues, or use Slack (If you have not joined yet, please use this link to join the group) for more real-time discussion.

Follow Us

Stay up to date with the latest ONNX news. [Facebook] [Twitter]

Roadmap

A roadmap process takes place every year. More details can be found here

Installation

Official Python packages

ONNX released packages are published in PyPi.

pip install onnx  # or pip install onnx[reference] for optional reference implementation dependencies

AMD's ONNX weekly packages are published in PyPI to enable experimentation and early testing.

vcpkg packages

onnx is in the maintenance list of vcpkg, you can easily use vcpkg to build and install it.

git clone https://github.com/microsoft/vcpkg.git
cd vcpkg
./bootstrap-vcpkg.bat # For powershell
./bootstrap-vcpkg.sh # For bash
./vcpkg install onnx

Conda packages

A binary build of ONNX is available from Conda, in conda-forge:

conda install -c conda-forge onnx

Build ONNX from Source

Before building from source uninstall any existing versions of onnx pip uninstall onnx.

c++17 or higher C++ compiler version is required to build ONNX from source. Still, users can specify their own CMAKE_CXX_STANDARD version for building ONNX.

If you don't have protobuf installed, ONNX will internally download and build protobuf for ONNX build.

Or, you can manually install protobuf C/C++ libraries and tools with specified version before proceeding forward. Then depending on how you installed protobuf, you need to set environment variable CMAKE_ARGS to "-DONNX_USE_PROTOBUF_SHARED_LIBS=ON" or "-DONNX_USE_PROTOBUF_SHARED_LIBS=OFF". For example, you may need to run the following command:

Linux:

export CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

Windows:

set CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

The ON/OFF depends on what kind of protobuf library you have. Shared libraries are files ending with *.dll/*.so/*.dylib. Static libraries are files ending with *.a/*.lib. This option depends on how you get your protobuf library and how it was built. And it is default OFF. You don't need to run the commands above if you'd prefer to use a static protobuf library.

Windows

If you are building ONNX from source, it is recommended that you also build Protobuf locally as a static library. The version distributed with conda-forge is a DLL, but ONNX expects it to be a static library. Building protobuf locally also lets you control the version of protobuf. The tested and recommended version is 3.21.12.

The instructions in this README assume you are using Visual Studio. It is recommended that you run all the commands from a shell started from "x64 Native Tools Command Prompt for VS 2019" and keep the build system generator for cmake (e.g., cmake -G "Visual Studio 16 2019") consistent while building protobuf as well as ONNX.

You can get protobuf by running the following commands:

git clone https://github.com/protocolbuffers/protobuf.git
cd protobuf
git checkout v21.12
cd cmake
cmake -G "Visual Studio 16 2019" -A x64 -DCMAKE_INSTALL_PREFIX=<protobuf_install_dir> -Dprotobuf_MSVC_STATIC_RUNTIME=OFF -Dprotobuf_BUILD_SHARED_LIBS=OFF -Dprotobuf_BUILD_TESTS=OFF -Dprotobuf_BUILD_EXAMPLES=OFF .
msbuild protobuf.sln /m /p:Configuration=Release
msbuild INSTALL.vcxproj /p:Configuration=Release

Then it will be built as a static library and installed to <protobuf_install_dir>. Please add the bin directory(which contains protoc.exe) to your PATH.

set CMAKE_PREFIX_PATH=<protobuf_install_dir>;%CMAKE_PREFIX_PATH%

Please note: if your protobuf_install_dir contains spaces, do not add quotation marks around it.

Alternative: if you don't want to change your PATH, you can set ONNX_PROTOC_EXECUTABLE instead.

set CMAKE_ARGS=-DONNX_PROTOC_EXECUTABLE=<full_path_to_protoc.exe>

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Linux

First, you need to install protobuf. The minimum Protobuf compiler (protoc) version required by ONNX is 3.6.1. Please note that old protoc versions might not work with CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON.

Ubuntu 20.04 (and newer) users may choose to install protobuf via

apt-get install python3-pip python3-dev libprotobuf-dev protobuf-compiler

In this case, it is required to add -DONNX_USE_PROTOBUF_SHARED_LIBS=ON to CMAKE_ARGS in the ONNX build step.

A more general way is to build and install it from source. See the instructions below for more details.

Installing Protobuf from source

Debian/Ubuntu:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v21.12
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

CentOS/RHEL/Fedora:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v21.12
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake  -DCMAKE_INSTALL_LIBDIR=lib64 -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

Here "-DCMAKE_POSITION_INDEPENDENT_CODE=ON" is crucial. By default static libraries are built without "-fPIC" flag, they are not position independent code. But shared libraries must be position independent code. Python C/C++ extensions(like ONNX) are shared libraries. So if a static library was not built with "-fPIC", it can't be linked to such a shared library.

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# Optional: prefer lite proto
export CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Mac

export NUM_CORES=`sysctl -n hw.ncpu`
brew update
brew install autoconf && brew install automake
wget https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protobuf-cpp-3.21.12.tar.gz
tar -xvf protobuf-cpp-3.21.12.tar.gz
cd protobuf-3.21.12
mkdir build_source && cd build_source
cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
make -j${NUM_CORES}
make install

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone --recursive https://github.com/onnx/onnx.git
cd onnx
# Optional: prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Verify Installation

After installation, run

python -c "import onnx"

to verify it works.

Common Build Options

For full list refer to CMakeLists.txt

Environment variables

  • USE_MSVC_STATIC_RUNTIME should be 1 or 0, not ON or OFF. When set to 1 onnx links statically to runtime library. Default: USE_MSVC_STATIC_RUNTIME=0

  • DEBUG should be 0 or 1. When set to 1 onnx is built in debug mode. or debug versions of the dependencies, you need to open the CMakeLists file and append a letter d at the end of the package name lines. For example, NAMES protobuf-lite would become NAMES protobuf-lited. Default: Debug=0

CMake variables

  • ONNX_USE_PROTOBUF_SHARED_LIBS should be ON or OFF. Default: ONNX_USE_PROTOBUF_SHARED_LIBS=OFF USE_MSVC_STATIC_RUNTIME=0 ONNX_USE_PROTOBUF_SHARED_LIBS determines how onnx links to protobuf libraries.

    • When set to ON - onnx will dynamically link to protobuf shared libs, PROTOBUF_USE_DLLS will be defined as described here, Protobuf_USE_STATIC_LIBS will be set to OFF and USE_MSVC_STATIC_RUNTIME must be 0.
    • When set to OFF - onnx will link statically to protobuf, and Protobuf_USE_STATIC_LIBS will be set to ON (to force the use of the static libraries) and USE_MSVC_STATIC_RUNTIME can be 0 or 1.
  • ONNX_USE_LITE_PROTO should be ON or OFF. When set to ON onnx uses lite protobuf instead of full protobuf. Default: ONNX_USE_LITE_PROTO=OFF

  • ONNX_WERROR should be ON or OFF. When set to ON warnings are treated as errors. Default: ONNX_WERROR=OFF in local builds, ON in CI and release pipelines.

Common Errors

  • Note: the import onnx command does not work from the source checkout directory; in this case you'll see ModuleNotFoundError: No module named 'onnx.onnx_cpp2py_export'. Change into another directory to fix this error.

  • If you run into any issues while building Protobuf as a static library, please ensure that shared Protobuf libraries, like libprotobuf, are not installed on your device or in the conda environment. If these shared libraries exist, either remove them to build Protobuf from source as a static library, or skip the Protobuf build from source to use the shared version directly.

  • If you run into any issues while building ONNX from source, and your error message reads, Could not find pythonXX.lib, ensure that you have consistent Python versions for common commands, such as python and pip. Clean all existing build files and rebuild ONNX again.

Testing

ONNX uses pytest as test driver. In order to run tests, you will first need to install pytest:

pip install pytest nbval

After installing pytest, use the following command to run tests.

pytest

Development

Check out the contributor guide for instructions.

License

Apache License v2.0

Code of Conduct

ONNX Open Source Code of Conduct

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

amd_onnx_weekly-1.17.0.dev20240722.tar.gz (11.4 MB view details)

Uploaded Source

Built Distributions

amd_onnx_weekly-1.17.0.dev20240722-cp312-cp312-win_amd64.whl (14.5 MB view details)

Uploaded CPython 3.12 Windows x86-64

amd_onnx_weekly-1.17.0.dev20240722-cp312-cp312-win32.whl (14.4 MB view details)

Uploaded CPython 3.12 Windows x86

amd_onnx_weekly-1.17.0.dev20240722-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.17.0.dev20240722-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.17.0.dev20240722-cp312-cp312-macosx_12_0_universal2.whl (16.7 MB view details)

Uploaded CPython 3.12 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.17.0.dev20240722-cp311-cp311-win_amd64.whl (14.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

amd_onnx_weekly-1.17.0.dev20240722-cp311-cp311-win32.whl (14.4 MB view details)

Uploaded CPython 3.11 Windows x86

amd_onnx_weekly-1.17.0.dev20240722-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.17.0.dev20240722-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.17.0.dev20240722-cp311-cp311-macosx_12_0_universal2.whl (16.7 MB view details)

Uploaded CPython 3.11 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.17.0.dev20240722-cp310-cp310-win_amd64.whl (14.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

amd_onnx_weekly-1.17.0.dev20240722-cp310-cp310-win32.whl (14.4 MB view details)

Uploaded CPython 3.10 Windows x86

amd_onnx_weekly-1.17.0.dev20240722-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.17.0.dev20240722-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.17.0.dev20240722-cp310-cp310-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.10 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.17.0.dev20240722-cp39-cp39-win_amd64.whl (14.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

amd_onnx_weekly-1.17.0.dev20240722-cp39-cp39-win32.whl (14.4 MB view details)

Uploaded CPython 3.9 Windows x86

amd_onnx_weekly-1.17.0.dev20240722-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.17.0.dev20240722-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.17.0.dev20240722-cp39-cp39-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.9 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.17.0.dev20240722-cp38-cp38-win_amd64.whl (14.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

amd_onnx_weekly-1.17.0.dev20240722-cp38-cp38-win32.whl (14.4 MB view details)

Uploaded CPython 3.8 Windows x86

amd_onnx_weekly-1.17.0.dev20240722-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.17.0.dev20240722-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.17.0.dev20240722-cp38-cp38-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.8 macOS 12.0+ universal2 (ARM64, x86-64)

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240722.tar.gz.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240722.tar.gz
Algorithm Hash digest
SHA256 40aefe42e0284fb3961b9c71f262d55d1ba5f2b7c972bf6ce415433b43a94482
MD5 d0b2b16cee6e5e473b920bb3f5bead7c
BLAKE2b-256 444db41c0c0a1d21a199c34505f14e11c6e0fbe4d588f74717c5d3a63f7f80b0

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240722-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240722-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 ce4690317e609b9cf01a4ec0e90d40d818fbc4d6db75c85ab3fd8f2e06f6b02e
MD5 11be3f6c261c0272c090a8838403b9e6
BLAKE2b-256 345b1334c07cdbefbb4e739079d1d1b6905cd4ba69cc63aa2caf3310f8e1346a

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240722-cp312-cp312-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240722-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 1fd52e9064cf0b3c77da0636b37798c72279735fcb7ec0f9d032b1e8f434ea38
MD5 53bde89e42fbbf32c3d3ca7ec447a3f0
BLAKE2b-256 691e1c04d81e41b92dd051b5a4c3e46f2c33da2950232ca743fa35012992d24b

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240722-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240722-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 be2b96406f78736fcbfd4dc09a6e2dd6bdcbf446ad6cbc78092a7e6dbff78402
MD5 5c18bea342802fbd6c8031936fd82b5e
BLAKE2b-256 e3c4d78b3f3f89ac77bc3c82d0a1483cff8d64f2c2f3519de912b769a5631c06

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240722-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240722-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e223ea809727121931c59df08bcfb5edddaa78511ffaf72f3f78211bcd841097
MD5 d251a19f8dae8af39a6518afb7959195
BLAKE2b-256 418ebbf06d22c20b34c21a2386f9f8f12cddcb5c50a253d602e2e2f95c23f8ae

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240722-cp312-cp312-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240722-cp312-cp312-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 1442049e9df594eb8a84381315149d1099b573e7ce5504f87a001ae314c04b1e
MD5 dbae3be567757446b9686e0bc54cd65d
BLAKE2b-256 e5ec632c354fadb678bf42bc7410a64369bb5c7e5d0afa0d5a01336c431f98e6

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240722-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240722-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 8e5daac70bbe0a68ab7914aa024bd8afe9179cd5044612d23857b256046a529a
MD5 794d77feb99971f247d5cff11587a77e
BLAKE2b-256 9473c5fd60e5e640db73f428c0c0cbfa4b43ce3d23958a22d8d547c6391b962d

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240722-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240722-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 e444b848022c463353624f42340e78a45953d0b8a36b7a2485bb0da49a4768c2
MD5 56ef50ac382dbb19dd92b16a6963aa30
BLAKE2b-256 bc6639dcdcc7df8635b6d653ac396fcc5eb4a09007bf5fb461a2c25745355086

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240722-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240722-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 66755cfbc25f77ca43a677087a695878c35a492d753e0ab771c64d1b65ee2fda
MD5 7003eef8c275be6904e3209134c408e9
BLAKE2b-256 0762f03c0874ffa565f5b7020dbf7bcbd39872f035b6fd59d519e29fb28626c4

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240722-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240722-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f5c02462f522e9fdafd5954fa656a13dfb119fbc7f2c9b95bf11a6b8b2b84bc8
MD5 329e6f39032cf179fb1226639426dce0
BLAKE2b-256 0641bd4fef695dff2e6faf1578a555fc41c61069c5bec406627afe1b512e222f

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240722-cp311-cp311-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240722-cp311-cp311-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 bbcb42201f430e19eada581d5063f60af302f25cfbc6d1425e23e7b29b8c8ce0
MD5 7bf47738551d6ddfeec201f0686ce907
BLAKE2b-256 14cbe8b78d73285779a2aa1e856cb5dfe59cc6d5fb92913688b7277a5c050dac

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240722-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240722-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ec6585775778a0de042b87bfa8d2c8fededddaf17ed02dd34e39396da15f2640
MD5 86213a3b4bb9b3bbf5a5ab8cd0e6bc86
BLAKE2b-256 726aa53b86adcf7e84595f3f240951a10b972a5bfe733a0b2b3c6d35c5fae6c5

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240722-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240722-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 180a4a1e3f7fc1f0b178d54c86f0bf7d1d35995b71184ff3b7a286f3dfae9ab6
MD5 6a1f134940999031aa14006e67fc1d44
BLAKE2b-256 425125773d41f64f92d565dd6c4e54f22272898bd0ef36cead123b55488c4472

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240722-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240722-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 31d1959e91bc2bf75314331493fde54c7bac5d75d7d324f9538a0d8475486da8
MD5 ca51c92e7cc80c46f425a55483d86d07
BLAKE2b-256 f2a8b8b3890b29b1e981c62a2d94195e2dfc0279d98e5e5bd5ff08fd8e909480

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240722-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240722-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3d9b52be20f892a5e96d0abc256a861b6319907c011edf0f120063d65a3b1219
MD5 536509c280c448172a8e54bcc1562be7
BLAKE2b-256 f31c7b5bf6a97839619d64a1daeb3c32ff6b558874015322b586ae29b52a2f13

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240722-cp310-cp310-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240722-cp310-cp310-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 5fd8d1f7f3be36d9cf3d3c1527e945e8ca206faa823c4093315e0cba929c345b
MD5 5aafc5faaab047da5e08371e9e25171b
BLAKE2b-256 bcb4f5d92d436d14c0f4545c4f9d0701097b11c158e7df9e0c2d6c9ce734981f

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240722-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240722-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2d38f7a1f68302b069fbf634d75585dcf086e43136c555af791044083874fafe
MD5 40bf81952386f7d7fe8d68caca40d73b
BLAKE2b-256 0b8c10ae47655dce68df2105f45d85c047bddcb8461cf022406f213688848fe6

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240722-cp39-cp39-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240722-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 91ff249136eb191a72a393f2686b9bf6eb9882cb3404b243b1301de7a299263e
MD5 b221b820ae9c3564e2813025bbcfd605
BLAKE2b-256 e726b0ebb78362a7c27b0e37eaa800dc1e48a84131059b56a00a07473c871a7d

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240722-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240722-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 faab1271ad78d0808e7c6128a906184db51bebfa049c7ede5049188cd52a7e9d
MD5 47849ed6a721e3cf4e7ca3fdece9da68
BLAKE2b-256 a181e090a4ce119390d57cf82524ea2f599fc01886e7e712c40994da5ce85988

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240722-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240722-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 907707c1b0fef01ec24c1281f59d68c95264d958842b91bd562ed160e55e928a
MD5 50cb2388056c72ed2965cce8ea2da342
BLAKE2b-256 19c85699d1f30b00e59b27ed824d086f15057f69eca502c9e7ad726bf5af29a6

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240722-cp39-cp39-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240722-cp39-cp39-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 7b6ef0575dac7127dbfa2fb1dc29544c72214f36751b8623ccf300c977891ef0
MD5 0f5b9722d9f1d83ec129a426735f81c2
BLAKE2b-256 b57f84c9ee494c284aeb1bc6a75123e67fd7cbb0fcc3314b148d42a752f3c85c

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240722-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240722-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 cf2587a90a8cbae2d7136deca891d954c459e389ed82b3d7ba17420f3cebd561
MD5 98e0c478103a65c53520e4dfd3c215af
BLAKE2b-256 168caf6be4f443bcb858bd6f6067fe650cdbb9813625c973253a535c488bbebb

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240722-cp38-cp38-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240722-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 79c06994c64948e03fd5c0dfd2c5c8c4612e67b1d8fdef7664b4b0e9ed4db34b
MD5 9e44284b41d932a3c9bf7d0de35b49f6
BLAKE2b-256 e4ee54aacc1df02d3e16680295eb443b80d900b4add56fb4b926845fa684380d

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240722-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240722-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d94900a7f07f245c7e555aed4cb7b9117fe9b3bf5ce7f5a37d6b98e239a2b24a
MD5 ac3ba1c2c396c7577f8da9f7d3726226
BLAKE2b-256 8a2b0a654eaaa788990e515f04542e572da893dda7c0df13cdc9e9f493b5cbf1

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240722-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240722-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0d5d1c33781198183d67fcfcdfc46a9406eb5e2b216ec213747cebf529ebdfbc
MD5 7c163f75a610c1f35fd359db605a9a16
BLAKE2b-256 14f9b09a16093299c5c9cd20a91e4c3cceb3a155f0d3ba6838833781da72eaef

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240722-cp38-cp38-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240722-cp38-cp38-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 f234db053583225919e338273ecb34c1072f7929b9d357835aa5cfb3a59f64b4
MD5 d6b30ec0d11cf4b40ed57359f638d79d
BLAKE2b-256 6e501422053a5cadd17513ce61984f846931ee87739b025b60fed6abf18a22b9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page