Skip to main content

Open Neural Network Exchange

Project description

PyPI - Version CI CII Best Practices OpenSSF Scorecard REUSE compliant Ruff Black

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Currently we focus on the capabilities needed for inferencing (scoring).

ONNX is widely supported and can be found in many frameworks, tools, and hardware. Enabling interoperability between different frameworks and streamlining the path from research to production helps increase the speed of innovation in the AI community. We invite the community to join us and further evolve ONNX.

Use ONNX

Learn about the ONNX spec

Programming utilities for working with ONNX Graphs

Contribute

ONNX is a community project and the open governance model is described here. We encourage you to join the effort and contribute feedback, ideas, and code. You can participate in the Special Interest Groups and Working Groups to shape the future of ONNX.

Check out our contribution guide to get started.

If you think some operator should be added to ONNX specification, please read this document.

Community meetings

The schedules of the regular meetings of the Steering Committee, the working groups and the SIGs can be found here

Community Meetups are held at least once a year. Content from previous community meetups are at:

Discuss

We encourage you to open Issues, or use Slack (If you have not joined yet, please use this link to join the group) for more real-time discussion.

Follow Us

Stay up to date with the latest ONNX news. [Facebook] [Twitter]

Roadmap

A roadmap process takes place every year. More details can be found here

Installation

Official Python packages

ONNX released packages are published in PyPi.

pip install onnx  # or pip install onnx[reference] for optional reference implementation dependencies

AMD's ONNX weekly packages are published in PyPI to enable experimentation and early testing.

vcpkg packages

onnx is in the maintenance list of vcpkg, you can easily use vcpkg to build and install it.

git clone https://github.com/microsoft/vcpkg.git
cd vcpkg
./bootstrap-vcpkg.bat # For powershell
./bootstrap-vcpkg.sh # For bash
./vcpkg install onnx

Conda packages

A binary build of ONNX is available from Conda, in conda-forge:

conda install -c conda-forge onnx

Build ONNX from Source

Before building from source uninstall any existing versions of onnx pip uninstall onnx.

c++17 or higher C++ compiler version is required to build ONNX from source. Still, users can specify their own CMAKE_CXX_STANDARD version for building ONNX.

If you don't have protobuf installed, ONNX will internally download and build protobuf for ONNX build.

Or, you can manually install protobuf C/C++ libraries and tools with specified version before proceeding forward. Then depending on how you installed protobuf, you need to set environment variable CMAKE_ARGS to "-DONNX_USE_PROTOBUF_SHARED_LIBS=ON" or "-DONNX_USE_PROTOBUF_SHARED_LIBS=OFF". For example, you may need to run the following command:

Linux:

export CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

Windows:

set CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

The ON/OFF depends on what kind of protobuf library you have. Shared libraries are files ending with *.dll/*.so/*.dylib. Static libraries are files ending with *.a/*.lib. This option depends on how you get your protobuf library and how it was built. And it is default OFF. You don't need to run the commands above if you'd prefer to use a static protobuf library.

Windows

If you are building ONNX from source, it is recommended that you also build Protobuf locally as a static library. The version distributed with conda-forge is a DLL, but ONNX expects it to be a static library. Building protobuf locally also lets you control the version of protobuf. The tested and recommended version is 3.21.12.

The instructions in this README assume you are using Visual Studio. It is recommended that you run all the commands from a shell started from "x64 Native Tools Command Prompt for VS 2019" and keep the build system generator for cmake (e.g., cmake -G "Visual Studio 16 2019") consistent while building protobuf as well as ONNX.

You can get protobuf by running the following commands:

git clone https://github.com/protocolbuffers/protobuf.git
cd protobuf
git checkout v21.12
cd cmake
cmake -G "Visual Studio 16 2019" -A x64 -DCMAKE_INSTALL_PREFIX=<protobuf_install_dir> -Dprotobuf_MSVC_STATIC_RUNTIME=OFF -Dprotobuf_BUILD_SHARED_LIBS=OFF -Dprotobuf_BUILD_TESTS=OFF -Dprotobuf_BUILD_EXAMPLES=OFF .
msbuild protobuf.sln /m /p:Configuration=Release
msbuild INSTALL.vcxproj /p:Configuration=Release

Then it will be built as a static library and installed to <protobuf_install_dir>. Please add the bin directory(which contains protoc.exe) to your PATH.

set CMAKE_PREFIX_PATH=<protobuf_install_dir>;%CMAKE_PREFIX_PATH%

Please note: if your protobuf_install_dir contains spaces, do not add quotation marks around it.

Alternative: if you don't want to change your PATH, you can set ONNX_PROTOC_EXECUTABLE instead.

set CMAKE_ARGS=-DONNX_PROTOC_EXECUTABLE=<full_path_to_protoc.exe>

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Linux

First, you need to install protobuf. The minimum Protobuf compiler (protoc) version required by ONNX is 3.6.1. Please note that old protoc versions might not work with CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON.

Ubuntu 20.04 (and newer) users may choose to install protobuf via

apt-get install python3-pip python3-dev libprotobuf-dev protobuf-compiler

In this case, it is required to add -DONNX_USE_PROTOBUF_SHARED_LIBS=ON to CMAKE_ARGS in the ONNX build step.

A more general way is to build and install it from source. See the instructions below for more details.

Installing Protobuf from source

Debian/Ubuntu:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v21.12
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

CentOS/RHEL/Fedora:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v21.12
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake  -DCMAKE_INSTALL_LIBDIR=lib64 -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

Here "-DCMAKE_POSITION_INDEPENDENT_CODE=ON" is crucial. By default static libraries are built without "-fPIC" flag, they are not position independent code. But shared libraries must be position independent code. Python C/C++ extensions(like ONNX) are shared libraries. So if a static library was not built with "-fPIC", it can't be linked to such a shared library.

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# Optional: prefer lite proto
export CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Mac

export NUM_CORES=`sysctl -n hw.ncpu`
brew update
brew install autoconf && brew install automake
wget https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protobuf-cpp-3.21.12.tar.gz
tar -xvf protobuf-cpp-3.21.12.tar.gz
cd protobuf-3.21.12
mkdir build_source && cd build_source
cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
make -j${NUM_CORES}
make install

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone --recursive https://github.com/onnx/onnx.git
cd onnx
# Optional: prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Verify Installation

After installation, run

python -c "import onnx"

to verify it works.

Common Build Options

For full list refer to CMakeLists.txt

Environment variables

  • USE_MSVC_STATIC_RUNTIME should be 1 or 0, not ON or OFF. When set to 1 onnx links statically to runtime library. Default: USE_MSVC_STATIC_RUNTIME=0

  • DEBUG should be 0 or 1. When set to 1 onnx is built in debug mode. or debug versions of the dependencies, you need to open the CMakeLists file and append a letter d at the end of the package name lines. For example, NAMES protobuf-lite would become NAMES protobuf-lited. Default: Debug=0

CMake variables

  • ONNX_USE_PROTOBUF_SHARED_LIBS should be ON or OFF. Default: ONNX_USE_PROTOBUF_SHARED_LIBS=OFF USE_MSVC_STATIC_RUNTIME=0 ONNX_USE_PROTOBUF_SHARED_LIBS determines how onnx links to protobuf libraries.

    • When set to ON - onnx will dynamically link to protobuf shared libs, PROTOBUF_USE_DLLS will be defined as described here, Protobuf_USE_STATIC_LIBS will be set to OFF and USE_MSVC_STATIC_RUNTIME must be 0.
    • When set to OFF - onnx will link statically to protobuf, and Protobuf_USE_STATIC_LIBS will be set to ON (to force the use of the static libraries) and USE_MSVC_STATIC_RUNTIME can be 0 or 1.
  • ONNX_USE_LITE_PROTO should be ON or OFF. When set to ON onnx uses lite protobuf instead of full protobuf. Default: ONNX_USE_LITE_PROTO=OFF

  • ONNX_WERROR should be ON or OFF. When set to ON warnings are treated as errors. Default: ONNX_WERROR=OFF in local builds, ON in CI and release pipelines.

Common Errors

  • Note: the import onnx command does not work from the source checkout directory; in this case you'll see ModuleNotFoundError: No module named 'onnx.onnx_cpp2py_export'. Change into another directory to fix this error.

  • If you run into any issues while building Protobuf as a static library, please ensure that shared Protobuf libraries, like libprotobuf, are not installed on your device or in the conda environment. If these shared libraries exist, either remove them to build Protobuf from source as a static library, or skip the Protobuf build from source to use the shared version directly.

  • If you run into any issues while building ONNX from source, and your error message reads, Could not find pythonXX.lib, ensure that you have consistent Python versions for common commands, such as python and pip. Clean all existing build files and rebuild ONNX again.

Testing

ONNX uses pytest as test driver. In order to run tests, you will first need to install pytest:

pip install pytest nbval

After installing pytest, use the following command to run tests.

pytest

Development

Check out the contributor guide for instructions.

License

Apache License v2.0

Code of Conduct

ONNX Open Source Code of Conduct

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

amd_onnx_weekly-1.17.0.dev20240729.tar.gz (11.4 MB view details)

Uploaded Source

Built Distributions

amd_onnx_weekly-1.17.0.dev20240729-cp312-cp312-win_amd64.whl (14.5 MB view details)

Uploaded CPython 3.12 Windows x86-64

amd_onnx_weekly-1.17.0.dev20240729-cp312-cp312-win32.whl (14.4 MB view details)

Uploaded CPython 3.12 Windows x86

amd_onnx_weekly-1.17.0.dev20240729-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.17.0.dev20240729-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.17.0.dev20240729-cp312-cp312-macosx_12_0_universal2.whl (16.7 MB view details)

Uploaded CPython 3.12 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.17.0.dev20240729-cp311-cp311-win_amd64.whl (14.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

amd_onnx_weekly-1.17.0.dev20240729-cp311-cp311-win32.whl (14.4 MB view details)

Uploaded CPython 3.11 Windows x86

amd_onnx_weekly-1.17.0.dev20240729-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.17.0.dev20240729-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.17.0.dev20240729-cp311-cp311-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.11 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.17.0.dev20240729-cp310-cp310-win_amd64.whl (14.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

amd_onnx_weekly-1.17.0.dev20240729-cp310-cp310-win32.whl (14.4 MB view details)

Uploaded CPython 3.10 Windows x86

amd_onnx_weekly-1.17.0.dev20240729-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.17.0.dev20240729-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.17.0.dev20240729-cp310-cp310-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.10 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.17.0.dev20240729-cp39-cp39-win_amd64.whl (14.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

amd_onnx_weekly-1.17.0.dev20240729-cp39-cp39-win32.whl (14.4 MB view details)

Uploaded CPython 3.9 Windows x86

amd_onnx_weekly-1.17.0.dev20240729-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.17.0.dev20240729-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.17.0.dev20240729-cp39-cp39-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.9 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.17.0.dev20240729-cp38-cp38-win_amd64.whl (14.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

amd_onnx_weekly-1.17.0.dev20240729-cp38-cp38-win32.whl (14.4 MB view details)

Uploaded CPython 3.8 Windows x86

amd_onnx_weekly-1.17.0.dev20240729-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.17.0.dev20240729-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.17.0.dev20240729-cp38-cp38-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.8 macOS 12.0+ universal2 (ARM64, x86-64)

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240729.tar.gz.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240729.tar.gz
Algorithm Hash digest
SHA256 246060155d30a195496faffead85ef1cdb6cde15ff3741f2dee1f363275d39b4
MD5 6466c52cc100e376eb09e15764e86968
BLAKE2b-256 2048a1beafb5e5687b3ed255aaeac5b449a3d5102e9ad6f9117b6acc3338b1b4

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240729-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240729-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 e16577c896eab4267d4590c3480c55b53a9663df8664642baf25f8d0af47c23a
MD5 bde446787307d512ea83a650fbbc53e1
BLAKE2b-256 03a8a7bec6a5c47f2017a9097daa5b74cb338a3f43ed113d051d7902d70a1799

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240729-cp312-cp312-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240729-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 28168f42b325c3e06b8401785689233d28b53b1c13a50a53133bfc0216821177
MD5 080df5c504f0ed98dc06aba6784b31d8
BLAKE2b-256 fc31a70be265dfaabeb030f6366182cd45ba3f139709fa28fda75ea79726eaa4

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240729-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240729-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 13c372adf99d1970266989ad42a9db21eb865047ce5dbc4b6c2fe01a624b566b
MD5 cd28604797f33551618f0afe039099a2
BLAKE2b-256 23042478a744e331e0aaee0d2550d0386c0ba4dd7096f4d3fc6542c02508d0ee

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240729-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240729-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 64d1d8fe1be6b57e3cb1d9f00a719cf6cde41262e0d30964d7df04f2efd5e3b7
MD5 4da4e1f9098ecff6f45e4769f9be6911
BLAKE2b-256 1b9424337a582d6885d6fbc46644d345362c29db1b3491735c925d194d25ea9b

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240729-cp312-cp312-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240729-cp312-cp312-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 488054ae857238c84bbdfeac769aab0afd1d18680b2091b1e108a5c5e1bdd21d
MD5 042cd65c70049756a0f4489f5382ae2c
BLAKE2b-256 a91877f96d2734e5862ce50f5e0b64711454760f6bc54ba15253190592bc4110

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240729-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240729-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 7b431598360ea51ebf3945bb0317ff78e711cb4c227df2985a73f373cd6dae47
MD5 3a5045d35a081d0a92c517b2147da257
BLAKE2b-256 a8666a6eb1dcceec2ee94006d6bb9c91040c76ec1f0f92ad5fc53207860ddd70

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240729-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240729-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 e18c8647de59451e6ced7674d886f28a882f18d4171bae2eef11d89c1fe8dbf5
MD5 18971b81f3e3b1e224a8154811819043
BLAKE2b-256 623ec0499ac48d8e97f594cde9e12b6430d073113a499f5d52f731b240bba99e

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240729-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240729-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d4cc9ecfcddd1edef7e871bb8ef57c33e792ff52d52cc4ffd59cdf54fc8261c5
MD5 eb552d638a444acda55cb5995ba47eb5
BLAKE2b-256 f216d7cfd4eec6e25ca63497503ab6c249292f4a795ce8250ed8d311b574f649

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240729-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240729-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e7ea6ee28f64930308ddac9f548adf30d8040609e5f71611c70f574eabe020f7
MD5 633f7c469f5f251d794c20e1a4ac498d
BLAKE2b-256 ee518e9c5552e3305bccabb4f1e6f6ae1285c1abe6ba68b7f61b5dd5dedf7bea

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240729-cp311-cp311-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240729-cp311-cp311-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 7bc570013eb8b904b4da0000cba9e6c8ba47fe6f4867ce5bf0c6c89867d5f64f
MD5 05ef9e20bca039ce8fb2e2a1137b5f5d
BLAKE2b-256 c07bd7e88d53413699c9f829406075ebf08fe8f679c9ee760cd0a81676451de9

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240729-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240729-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 9034dc5a6232f26527446cedf5654f990b13cf4f9d7cbbc3de8542101e7aead7
MD5 a32389ada65c5c144e376cc6735f193a
BLAKE2b-256 f3c70693a8d2df73a46410811837dbf49e5979f57d6b8eeed2455c806f4909d1

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240729-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240729-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 62f66dc45e563375c7f94fdf595a57d6b642708b59cd3deb8fa47b9018fc15d3
MD5 c8d2c94f87a8d718fa8bd064f6a3d67b
BLAKE2b-256 19be6b07e658891a1da95cd88c795d8cb75f38ad16895154b0d758f163cd990e

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240729-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240729-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b621c824c283ede86a3409ab3a33d7970766090947b9e8800f56d1ea8f75c74a
MD5 104fc3618c09ad2904e08ce339001f02
BLAKE2b-256 0881cabf4e7c7dd2bcf49a5caabbe1d9bcddee5232716292e89e83ad2b9d5e87

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240729-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240729-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9885813326d4fe87750ba3dd79153d28ac3d79b3c47c979e7f4a6d1da6ac822b
MD5 ac2c0f183432272d6475afcdd1e6c602
BLAKE2b-256 ed38ac458475b57f81a6ade59a9e07b498f2afbc5c749d0509931d17795fe5b2

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240729-cp310-cp310-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240729-cp310-cp310-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 5345e7ca90d5e29b5b196280b8a0956496c02b988e40e25c85f89d9c2c12d40d
MD5 fac2d7bde96cd502bd5b1ff72a0648f9
BLAKE2b-256 9392ea46af7adc14862718aa178d6820d0eb9d0db3e6869fc1b65b42ba468649

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240729-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240729-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 34603b1680463a8861fb8e00e2b9d37a50e55d947a281f8a2bb7f219caf56db0
MD5 9f20f7cf20a559329f014d85f4e2f815
BLAKE2b-256 9516fb1cdc9c3cd227a469ed8cbfb649987c27d73ed4392446762ffb7309d793

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240729-cp39-cp39-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240729-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 9f4dccddb402b084a6a976f37681f0675f5af144b2325c99cdbcb23a68b32ddb
MD5 29a71fbb069d047fa7f125522f02ae75
BLAKE2b-256 9e1f81d848a8c8d851bd2ca633cc9704304199300798c26dc161e61746f1499c

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240729-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240729-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 540af5702778221bb3572a592b43ca078e1f9fafec401fc6e32a352a55dbf605
MD5 7e2d83a96167cc776c49c96e21668705
BLAKE2b-256 ba50b0f703c16ed5ba473c9241391777a5052cce222827e3f728d49b999b205c

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240729-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240729-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 08ae00541ae2db3fba7d08acd4765bd38f852eaa8050de14f6b81f60d68884d5
MD5 aa9899b0d548fc1ac14b6682b5731aef
BLAKE2b-256 fbdd14e8759fd5080eedf2c822a046c421bf1f2d7ace0a6b5fc9dbb66a1a66f7

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240729-cp39-cp39-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240729-cp39-cp39-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 7e2cd8c3bcb69d7dc9714c70bd7bf84c51c2b054663e9f2de8b5583c6b366f84
MD5 6c674af691b2717e81662c1cd3c96477
BLAKE2b-256 44b1ed22a7299ffb7d6ce7d2bab77a2a57d2f643c773f55fb606f534d9ab2883

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240729-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240729-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 a0fd667d19258d60addd8ca87fa306209ce44f69e82f176742101efb7d2c72f3
MD5 0d13d97ea2e0c4441c16d16af583d4e8
BLAKE2b-256 82555f25da411f1e266d17e63be2ea74a157353757a4f8ae3ba184e8abec7391

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240729-cp38-cp38-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240729-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 cead670e7c21c4bde8c10a7dd66c6b8b767598c9982daaf632d9bff2a55026d1
MD5 356ff3dc6aae60d4cc0b78cd1dd284b5
BLAKE2b-256 f6bfbac74bab1c1d7728e1d40ce14c1fc0655c5adaf5b44530495797a287b091

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240729-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240729-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1e6ec621e08fa7e53cfc810cc6f5cbf437a4a24d73ca70e022a00bbde915ec8b
MD5 fc62c4544b390824972a3767b38d406a
BLAKE2b-256 04466baa9aedb36bda7524ca06628393fb4c0c3bda33ec383344e6f80b539aeb

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240729-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240729-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 89a350775025c0bbbdfdb314c6b0324839bfb68b52218f6e704517f18ea2b2f0
MD5 69b10e6bf9ab484d66eaef8c50e430ab
BLAKE2b-256 89c98068cbcd07855e5f29c072f066ff5eb4df5d3e6f9c222ad8d9e2e6a7fa74

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240729-cp38-cp38-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240729-cp38-cp38-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 83779deda825acb0210c013d6298256fa98a46636b1bb4d0fa7fda8e8b328dab
MD5 7ff93be9b33f3741b6112c3e5d00dde8
BLAKE2b-256 b7260f316ca568c00824398924435f1d4f6cc584282b2b00ae4715e10a2942d0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page