Skip to main content

Open Neural Network Exchange

Project description

PyPI - Version CI CII Best Practices OpenSSF Scorecard REUSE compliant Ruff Black

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Currently we focus on the capabilities needed for inferencing (scoring).

ONNX is widely supported and can be found in many frameworks, tools, and hardware. Enabling interoperability between different frameworks and streamlining the path from research to production helps increase the speed of innovation in the AI community. We invite the community to join us and further evolve ONNX.

Use ONNX

Learn about the ONNX spec

Programming utilities for working with ONNX Graphs

Contribute

ONNX is a community project and the open governance model is described here. We encourage you to join the effort and contribute feedback, ideas, and code. You can participate in the Special Interest Groups and Working Groups to shape the future of ONNX.

Check out our contribution guide to get started.

If you think some operator should be added to ONNX specification, please read this document.

Community meetings

The schedules of the regular meetings of the Steering Committee, the working groups and the SIGs can be found here

Community Meetups are held at least once a year. Content from previous community meetups are at:

Discuss

We encourage you to open Issues, or use Slack (If you have not joined yet, please use this link to join the group) for more real-time discussion.

Follow Us

Stay up to date with the latest ONNX news. [Facebook] [Twitter]

Roadmap

A roadmap process takes place every year. More details can be found here

Installation

Official Python packages

ONNX released packages are published in PyPi.

pip install onnx  # or pip install onnx[reference] for optional reference implementation dependencies

AMD's ONNX weekly packages are published in PyPI to enable experimentation and early testing.

vcpkg packages

onnx is in the maintenance list of vcpkg, you can easily use vcpkg to build and install it.

git clone https://github.com/microsoft/vcpkg.git
cd vcpkg
./bootstrap-vcpkg.bat # For powershell
./bootstrap-vcpkg.sh # For bash
./vcpkg install onnx

Conda packages

A binary build of ONNX is available from Conda, in conda-forge:

conda install -c conda-forge onnx

Build ONNX from Source

Before building from source uninstall any existing versions of onnx pip uninstall onnx.

c++17 or higher C++ compiler version is required to build ONNX from source. Still, users can specify their own CMAKE_CXX_STANDARD version for building ONNX.

If you don't have protobuf installed, ONNX will internally download and build protobuf for ONNX build.

Or, you can manually install protobuf C/C++ libraries and tools with specified version before proceeding forward. Then depending on how you installed protobuf, you need to set environment variable CMAKE_ARGS to "-DONNX_USE_PROTOBUF_SHARED_LIBS=ON" or "-DONNX_USE_PROTOBUF_SHARED_LIBS=OFF". For example, you may need to run the following command:

Linux:

export CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

Windows:

set CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

The ON/OFF depends on what kind of protobuf library you have. Shared libraries are files ending with *.dll/*.so/*.dylib. Static libraries are files ending with *.a/*.lib. This option depends on how you get your protobuf library and how it was built. And it is default OFF. You don't need to run the commands above if you'd prefer to use a static protobuf library.

Windows

If you are building ONNX from source, it is recommended that you also build Protobuf locally as a static library. The version distributed with conda-forge is a DLL, but ONNX expects it to be a static library. Building protobuf locally also lets you control the version of protobuf. The tested and recommended version is 3.21.12.

The instructions in this README assume you are using Visual Studio. It is recommended that you run all the commands from a shell started from "x64 Native Tools Command Prompt for VS 2019" and keep the build system generator for cmake (e.g., cmake -G "Visual Studio 16 2019") consistent while building protobuf as well as ONNX.

You can get protobuf by running the following commands:

git clone https://github.com/protocolbuffers/protobuf.git
cd protobuf
git checkout v21.12
cd cmake
cmake -G "Visual Studio 16 2019" -A x64 -DCMAKE_INSTALL_PREFIX=<protobuf_install_dir> -Dprotobuf_MSVC_STATIC_RUNTIME=OFF -Dprotobuf_BUILD_SHARED_LIBS=OFF -Dprotobuf_BUILD_TESTS=OFF -Dprotobuf_BUILD_EXAMPLES=OFF .
msbuild protobuf.sln /m /p:Configuration=Release
msbuild INSTALL.vcxproj /p:Configuration=Release

Then it will be built as a static library and installed to <protobuf_install_dir>. Please add the bin directory(which contains protoc.exe) to your PATH.

set CMAKE_PREFIX_PATH=<protobuf_install_dir>;%CMAKE_PREFIX_PATH%

Please note: if your protobuf_install_dir contains spaces, do not add quotation marks around it.

Alternative: if you don't want to change your PATH, you can set ONNX_PROTOC_EXECUTABLE instead.

set CMAKE_ARGS=-DONNX_PROTOC_EXECUTABLE=<full_path_to_protoc.exe>

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Linux

First, you need to install protobuf. The minimum Protobuf compiler (protoc) version required by ONNX is 3.6.1. Please note that old protoc versions might not work with CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON.

Ubuntu 20.04 (and newer) users may choose to install protobuf via

apt-get install python3-pip python3-dev libprotobuf-dev protobuf-compiler

In this case, it is required to add -DONNX_USE_PROTOBUF_SHARED_LIBS=ON to CMAKE_ARGS in the ONNX build step.

A more general way is to build and install it from source. See the instructions below for more details.

Installing Protobuf from source

Debian/Ubuntu:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v21.12
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

CentOS/RHEL/Fedora:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v21.12
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake  -DCMAKE_INSTALL_LIBDIR=lib64 -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

Here "-DCMAKE_POSITION_INDEPENDENT_CODE=ON" is crucial. By default static libraries are built without "-fPIC" flag, they are not position independent code. But shared libraries must be position independent code. Python C/C++ extensions(like ONNX) are shared libraries. So if a static library was not built with "-fPIC", it can't be linked to such a shared library.

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# Optional: prefer lite proto
export CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Mac

export NUM_CORES=`sysctl -n hw.ncpu`
brew update
brew install autoconf && brew install automake
wget https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protobuf-cpp-3.21.12.tar.gz
tar -xvf protobuf-cpp-3.21.12.tar.gz
cd protobuf-3.21.12
mkdir build_source && cd build_source
cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
make -j${NUM_CORES}
make install

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone --recursive https://github.com/onnx/onnx.git
cd onnx
# Optional: prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Verify Installation

After installation, run

python -c "import onnx"

to verify it works.

Common Build Options

For full list refer to CMakeLists.txt

Environment variables

  • USE_MSVC_STATIC_RUNTIME should be 1 or 0, not ON or OFF. When set to 1 onnx links statically to runtime library. Default: USE_MSVC_STATIC_RUNTIME=0

  • DEBUG should be 0 or 1. When set to 1 onnx is built in debug mode. or debug versions of the dependencies, you need to open the CMakeLists file and append a letter d at the end of the package name lines. For example, NAMES protobuf-lite would become NAMES protobuf-lited. Default: Debug=0

CMake variables

  • ONNX_USE_PROTOBUF_SHARED_LIBS should be ON or OFF. Default: ONNX_USE_PROTOBUF_SHARED_LIBS=OFF USE_MSVC_STATIC_RUNTIME=0 ONNX_USE_PROTOBUF_SHARED_LIBS determines how onnx links to protobuf libraries.

    • When set to ON - onnx will dynamically link to protobuf shared libs, PROTOBUF_USE_DLLS will be defined as described here, Protobuf_USE_STATIC_LIBS will be set to OFF and USE_MSVC_STATIC_RUNTIME must be 0.
    • When set to OFF - onnx will link statically to protobuf, and Protobuf_USE_STATIC_LIBS will be set to ON (to force the use of the static libraries) and USE_MSVC_STATIC_RUNTIME can be 0 or 1.
  • ONNX_USE_LITE_PROTO should be ON or OFF. When set to ON onnx uses lite protobuf instead of full protobuf. Default: ONNX_USE_LITE_PROTO=OFF

  • ONNX_WERROR should be ON or OFF. When set to ON warnings are treated as errors. Default: ONNX_WERROR=OFF in local builds, ON in CI and release pipelines.

Common Errors

  • Note: the import onnx command does not work from the source checkout directory; in this case you'll see ModuleNotFoundError: No module named 'onnx.onnx_cpp2py_export'. Change into another directory to fix this error.

  • If you run into any issues while building Protobuf as a static library, please ensure that shared Protobuf libraries, like libprotobuf, are not installed on your device or in the conda environment. If these shared libraries exist, either remove them to build Protobuf from source as a static library, or skip the Protobuf build from source to use the shared version directly.

  • If you run into any issues while building ONNX from source, and your error message reads, Could not find pythonXX.lib, ensure that you have consistent Python versions for common commands, such as python and pip. Clean all existing build files and rebuild ONNX again.

Testing

ONNX uses pytest as test driver. In order to run tests, you will first need to install pytest:

pip install pytest nbval

After installing pytest, use the following command to run tests.

pytest

Development

Check out the contributor guide for instructions.

License

Apache License v2.0

Code of Conduct

ONNX Open Source Code of Conduct

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

amd_onnx_weekly-1.17.0.dev20240805.tar.gz (11.4 MB view details)

Uploaded Source

Built Distributions

amd_onnx_weekly-1.17.0.dev20240805-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.17.0.dev20240805-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.17.0.dev20240805-cp312-cp312-macosx_12_0_universal2.whl (16.7 MB view details)

Uploaded CPython 3.12 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.17.0.dev20240805-cp311-cp311-win32.whl (14.4 MB view details)

Uploaded CPython 3.11 Windows x86

amd_onnx_weekly-1.17.0.dev20240805-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.17.0.dev20240805-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.17.0.dev20240805-cp311-cp311-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.11 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.17.0.dev20240805-cp310-cp310-win32.whl (14.4 MB view details)

Uploaded CPython 3.10 Windows x86

amd_onnx_weekly-1.17.0.dev20240805-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.17.0.dev20240805-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.17.0.dev20240805-cp310-cp310-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.10 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.17.0.dev20240805-cp39-cp39-win32.whl (14.4 MB view details)

Uploaded CPython 3.9 Windows x86

amd_onnx_weekly-1.17.0.dev20240805-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.17.0.dev20240805-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.17.0.dev20240805-cp39-cp39-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.9 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.17.0.dev20240805-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.17.0.dev20240805-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.17.0.dev20240805-cp38-cp38-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.8 macOS 12.0+ universal2 (ARM64, x86-64)

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240805.tar.gz.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240805.tar.gz
Algorithm Hash digest
SHA256 0dc52971d49784a4f28bfd0ea97b1f948bb90003ff940196b0e7eda4ff990289
MD5 291a485778820363110e4c809302f237
BLAKE2b-256 e9cf1ef86c704cf10a3def1ff7aa2f1171c12ba1e954c988a63f7ff7a3f05530

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240805-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240805-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 099b069d11770bb0c10fd05fcdde831f38a84fdd7ae85e67acfed1b5042c8059
MD5 9602e7a1cf71943a4ed738e7ebf67603
BLAKE2b-256 08355fa1d203a93cc58275305061e5d7aa39c9b735b2c39a47aa11a431df4d69

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240805-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240805-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e292be1ab6a919ccbf93fda20f79b5ca82b5cc02503716094254f01a9b24df0d
MD5 d22d351286ba9b35cccbb94020f016fc
BLAKE2b-256 b928a0dc5dfc899c06dd5839d579f88114e6613d13c195710382856bc9913443

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240805-cp312-cp312-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240805-cp312-cp312-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 9a3a8020e049f78e23a119be57e117110282d55f3e81500f104f6ec03f9fde21
MD5 d9a53c97e715be696eb62d22487cc730
BLAKE2b-256 5a1206e5e91b8306245a13c1013faa8339abf9f59ba4fe76c053f9fa5fddfb61

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240805-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240805-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 5bb6cc011fed4fe160e4677ae50af9cd8be814b1c82cd55d4f6b5ee43a7032b7
MD5 43b9520067d847436af97397950b0316
BLAKE2b-256 035c6824a590b2ebb10d26d39bf43e8e8155e7e0f46b5f5636e24b486a35394f

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240805-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240805-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 da843f8bdb75177f85cfea3a3284d51037c0834a5d59ac3093af3b7fe574d25f
MD5 9c3bcf6805af461da9a91bdae46a7914
BLAKE2b-256 98f83e2296abe03f06397bd41749a68dcca7200ec046947330017f34ae1dc344

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240805-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240805-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7bd81d964adfac6a3237053310c39a43d64cbba69afda47bd02b9558f808c930
MD5 fb00b0f291b1adc680e97d9eb70f1846
BLAKE2b-256 18ec31e8c71493f4e43b815b282406eb86e983c60ae80182e9e5d7c95c146a1e

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240805-cp311-cp311-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240805-cp311-cp311-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 add35781b7d9d6817a4ab979e618b9559ed5b4cf2ce8e5d1aa792aa5b97a4c90
MD5 943ab9b6b88877312fe9a0f9513b60d8
BLAKE2b-256 6c21c28a200578da8fbba88435c45a04b62a25284a2d7fff0e6d3c4cd8bb5f5d

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240805-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240805-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 e195ddb7495dee8a72b90eeab528f1ec785d5cf3a57ad3cb027c9145ca6661eb
MD5 1c38e8d817357808351d3f6500daba48
BLAKE2b-256 5ec96a252b1225252e7bb8a10dce6c61c412bc44b2c8db7b6018e00e4a04dc81

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240805-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240805-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2b1616dabe9db8a3a7bd1c96802e46b3059298dd2b0998790a4c86f8dc95f8a8
MD5 95f0bbf680f59bd8e605d99dcb0ed2e7
BLAKE2b-256 17296eaf39cd425329d6ecd91a79416e9cf9f2011e3e4f0ed5becc7c2e4290ac

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240805-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240805-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 82511137e12bb4744b4aa6bdd5407ec9beb002310394ec9b5cb6664b1d87c6b1
MD5 7420f113c481612812e183bd16cbd664
BLAKE2b-256 f0eac1212c42cd0aa67b177882f8e33bb370a8d0ecf7494bbb1af274265ab8ed

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240805-cp310-cp310-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240805-cp310-cp310-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 ae7b81d65ef3d059c4f1f5d83a2b52ffa93f1bfc8dbe546972808cbb33047325
MD5 4a1a93cc5fb755f04344a5e1aafdde4f
BLAKE2b-256 4401e210ab61ea76e66cb3e6f284ce5c624e191d00847202a8e104ef64eb89f5

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240805-cp39-cp39-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240805-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 65d359f1df8bb978d7e5eb877df1a7a6cac369e5819f6c85e85c40d156e0336e
MD5 5999f0e0a90269c71fa4d28c85644414
BLAKE2b-256 dccf43e915e9c2ed526d7e32f0ecc066c42373d41ed5f8fb0f3b8f076e096544

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240805-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240805-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2d7e0662c070189059c357424b6354300a0b544eb793121453747e4bb1e18f05
MD5 0ca836c542e82fe9983e578070bd568f
BLAKE2b-256 a74f00be01092043dc6bbb9c1b8927f99cb67945f416285bfe03f8841debb6d6

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240805-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240805-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 11d8d10b0ab8c7ce797dc89bff1558cea28f1a54950ad68d5154af97486de40b
MD5 0b3bf32a8742d6c613e64ae17c1845df
BLAKE2b-256 6f2def2a15084115b2937de900e53771573134f4276b18bb340240bc4d424b67

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240805-cp39-cp39-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240805-cp39-cp39-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 8b54ef08a2b822b1b71cffe257a93455361d6a131534a255a5a11268fc915ec0
MD5 2834c4d80195b0d4b7574d9f87a6f5b3
BLAKE2b-256 fa3f645ea58cd057f2869008683122c745a338e4fdbc86d8392fc170c3572de7

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240805-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240805-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c7313474ac378f4ed2e835d3601be891ce8f87c08aad733053abaa22484eecc3
MD5 8d2c18a860a34879c929d2bf88a8bccc
BLAKE2b-256 d23aeedcff7242d81bca1c7143a0856eff98c4df84a38609b332ad6403c27464

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240805-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240805-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fdbb379f9686408f1634a160d8356e19c3170407434b0cfbe27b542a0680af25
MD5 710ae2b26224da3e947a19948f1d3d89
BLAKE2b-256 0a90435fe6b62faf5f1460a9057c564b2c021c3c2ad8a029305c158ce6ff8106

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240805-cp38-cp38-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240805-cp38-cp38-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 846ee7bbe74c721de5554d72f66f4aebdcce552b5e973cce9e1f287e1fdd23ad
MD5 cc9ab97970cc939b83531f01b6568ac2
BLAKE2b-256 b2e59ab877a6e0c7f653721565ecfcd4689105d1d95ad7119549ebc6cf8a7afa

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page