Skip to main content

Open Neural Network Exchange

Project description

PyPI - Version CI CII Best Practices OpenSSF Scorecard REUSE compliant Ruff Black

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Currently we focus on the capabilities needed for inferencing (scoring).

ONNX is widely supported and can be found in many frameworks, tools, and hardware. Enabling interoperability between different frameworks and streamlining the path from research to production helps increase the speed of innovation in the AI community. We invite the community to join us and further evolve ONNX.

Use ONNX

Learn about the ONNX spec

Programming utilities for working with ONNX Graphs

Contribute

ONNX is a community project and the open governance model is described here. We encourage you to join the effort and contribute feedback, ideas, and code. You can participate in the Special Interest Groups and Working Groups to shape the future of ONNX.

Check out our contribution guide to get started.

If you think some operator should be added to ONNX specification, please read this document.

Community meetings

The schedules of the regular meetings of the Steering Committee, the working groups and the SIGs can be found here

Community Meetups are held at least once a year. Content from previous community meetups are at:

Discuss

We encourage you to open Issues, or use Slack (If you have not joined yet, please use this link to join the group) for more real-time discussion.

Follow Us

Stay up to date with the latest ONNX news. [Facebook] [Twitter]

Roadmap

A roadmap process takes place every year. More details can be found here

Installation

Official Python packages

ONNX released packages are published in PyPi.

pip install onnx  # or pip install onnx[reference] for optional reference implementation dependencies

AMD's ONNX weekly packages are published in PyPI to enable experimentation and early testing.

vcpkg packages

onnx is in the maintenance list of vcpkg, you can easily use vcpkg to build and install it.

git clone https://github.com/microsoft/vcpkg.git
cd vcpkg
./bootstrap-vcpkg.bat # For powershell
./bootstrap-vcpkg.sh # For bash
./vcpkg install onnx

Conda packages

A binary build of ONNX is available from Conda, in conda-forge:

conda install -c conda-forge onnx

Build ONNX from Source

Before building from source uninstall any existing versions of onnx pip uninstall onnx.

c++17 or higher C++ compiler version is required to build ONNX from source. Still, users can specify their own CMAKE_CXX_STANDARD version for building ONNX.

If you don't have protobuf installed, ONNX will internally download and build protobuf for ONNX build.

Or, you can manually install protobuf C/C++ libraries and tools with specified version before proceeding forward. Then depending on how you installed protobuf, you need to set environment variable CMAKE_ARGS to "-DONNX_USE_PROTOBUF_SHARED_LIBS=ON" or "-DONNX_USE_PROTOBUF_SHARED_LIBS=OFF". For example, you may need to run the following command:

Linux:

export CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

Windows:

set CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

The ON/OFF depends on what kind of protobuf library you have. Shared libraries are files ending with *.dll/*.so/*.dylib. Static libraries are files ending with *.a/*.lib. This option depends on how you get your protobuf library and how it was built. And it is default OFF. You don't need to run the commands above if you'd prefer to use a static protobuf library.

Windows

If you are building ONNX from source, it is recommended that you also build Protobuf locally as a static library. The version distributed with conda-forge is a DLL, but ONNX expects it to be a static library. Building protobuf locally also lets you control the version of protobuf. The tested and recommended version is 3.21.12.

The instructions in this README assume you are using Visual Studio. It is recommended that you run all the commands from a shell started from "x64 Native Tools Command Prompt for VS 2019" and keep the build system generator for cmake (e.g., cmake -G "Visual Studio 16 2019") consistent while building protobuf as well as ONNX.

You can get protobuf by running the following commands:

git clone https://github.com/protocolbuffers/protobuf.git
cd protobuf
git checkout v21.12
cd cmake
cmake -G "Visual Studio 16 2019" -A x64 -DCMAKE_INSTALL_PREFIX=<protobuf_install_dir> -Dprotobuf_MSVC_STATIC_RUNTIME=OFF -Dprotobuf_BUILD_SHARED_LIBS=OFF -Dprotobuf_BUILD_TESTS=OFF -Dprotobuf_BUILD_EXAMPLES=OFF .
msbuild protobuf.sln /m /p:Configuration=Release
msbuild INSTALL.vcxproj /p:Configuration=Release

Then it will be built as a static library and installed to <protobuf_install_dir>. Please add the bin directory(which contains protoc.exe) to your PATH.

set CMAKE_PREFIX_PATH=<protobuf_install_dir>;%CMAKE_PREFIX_PATH%

Please note: if your protobuf_install_dir contains spaces, do not add quotation marks around it.

Alternative: if you don't want to change your PATH, you can set ONNX_PROTOC_EXECUTABLE instead.

set CMAKE_ARGS=-DONNX_PROTOC_EXECUTABLE=<full_path_to_protoc.exe>

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Linux

First, you need to install protobuf. The minimum Protobuf compiler (protoc) version required by ONNX is 3.6.1. Please note that old protoc versions might not work with CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON.

Ubuntu 20.04 (and newer) users may choose to install protobuf via

apt-get install python3-pip python3-dev libprotobuf-dev protobuf-compiler

In this case, it is required to add -DONNX_USE_PROTOBUF_SHARED_LIBS=ON to CMAKE_ARGS in the ONNX build step.

A more general way is to build and install it from source. See the instructions below for more details.

Installing Protobuf from source

Debian/Ubuntu:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v21.12
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

CentOS/RHEL/Fedora:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v21.12
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake  -DCMAKE_INSTALL_LIBDIR=lib64 -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

Here "-DCMAKE_POSITION_INDEPENDENT_CODE=ON" is crucial. By default static libraries are built without "-fPIC" flag, they are not position independent code. But shared libraries must be position independent code. Python C/C++ extensions(like ONNX) are shared libraries. So if a static library was not built with "-fPIC", it can't be linked to such a shared library.

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# Optional: prefer lite proto
export CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Mac

export NUM_CORES=`sysctl -n hw.ncpu`
brew update
brew install autoconf && brew install automake
wget https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protobuf-cpp-3.21.12.tar.gz
tar -xvf protobuf-cpp-3.21.12.tar.gz
cd protobuf-3.21.12
mkdir build_source && cd build_source
cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
make -j${NUM_CORES}
make install

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone --recursive https://github.com/onnx/onnx.git
cd onnx
# Optional: prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Verify Installation

After installation, run

python -c "import onnx"

to verify it works.

Common Build Options

For full list refer to CMakeLists.txt

Environment variables

  • USE_MSVC_STATIC_RUNTIME should be 1 or 0, not ON or OFF. When set to 1 onnx links statically to runtime library. Default: USE_MSVC_STATIC_RUNTIME=0

  • DEBUG should be 0 or 1. When set to 1 onnx is built in debug mode. or debug versions of the dependencies, you need to open the CMakeLists file and append a letter d at the end of the package name lines. For example, NAMES protobuf-lite would become NAMES protobuf-lited. Default: Debug=0

CMake variables

  • ONNX_USE_PROTOBUF_SHARED_LIBS should be ON or OFF. Default: ONNX_USE_PROTOBUF_SHARED_LIBS=OFF USE_MSVC_STATIC_RUNTIME=0 ONNX_USE_PROTOBUF_SHARED_LIBS determines how onnx links to protobuf libraries.

    • When set to ON - onnx will dynamically link to protobuf shared libs, PROTOBUF_USE_DLLS will be defined as described here, Protobuf_USE_STATIC_LIBS will be set to OFF and USE_MSVC_STATIC_RUNTIME must be 0.
    • When set to OFF - onnx will link statically to protobuf, and Protobuf_USE_STATIC_LIBS will be set to ON (to force the use of the static libraries) and USE_MSVC_STATIC_RUNTIME can be 0 or 1.
  • ONNX_USE_LITE_PROTO should be ON or OFF. When set to ON onnx uses lite protobuf instead of full protobuf. Default: ONNX_USE_LITE_PROTO=OFF

  • ONNX_WERROR should be ON or OFF. When set to ON warnings are treated as errors. Default: ONNX_WERROR=OFF in local builds, ON in CI and release pipelines.

Common Errors

  • Note: the import onnx command does not work from the source checkout directory; in this case you'll see ModuleNotFoundError: No module named 'onnx.onnx_cpp2py_export'. Change into another directory to fix this error.

  • If you run into any issues while building Protobuf as a static library, please ensure that shared Protobuf libraries, like libprotobuf, are not installed on your device or in the conda environment. If these shared libraries exist, either remove them to build Protobuf from source as a static library, or skip the Protobuf build from source to use the shared version directly.

  • If you run into any issues while building ONNX from source, and your error message reads, Could not find pythonXX.lib, ensure that you have consistent Python versions for common commands, such as python and pip. Clean all existing build files and rebuild ONNX again.

Testing

ONNX uses pytest as test driver. In order to run tests, you will first need to install pytest:

pip install pytest nbval

After installing pytest, use the following command to run tests.

pytest

Development

Check out the contributor guide for instructions.

License

Apache License v2.0

Code of Conduct

ONNX Open Source Code of Conduct

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

amd_onnx_weekly-1.17.0.dev20240819.tar.gz (11.4 MB view details)

Uploaded Source

Built Distributions

amd_onnx_weekly-1.17.0.dev20240819-cp312-cp312-win32.whl (14.4 MB view details)

Uploaded CPython 3.12 Windows x86

amd_onnx_weekly-1.17.0.dev20240819-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.17.0.dev20240819-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.17.0.dev20240819-cp312-cp312-macosx_12_0_universal2.whl (16.7 MB view details)

Uploaded CPython 3.12 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.17.0.dev20240819-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.17.0.dev20240819-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.17.0.dev20240819-cp311-cp311-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.11 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.17.0.dev20240819-cp310-cp310-win32.whl (14.4 MB view details)

Uploaded CPython 3.10 Windows x86

amd_onnx_weekly-1.17.0.dev20240819-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.17.0.dev20240819-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.17.0.dev20240819-cp310-cp310-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.10 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.17.0.dev20240819-cp39-cp39-win32.whl (14.4 MB view details)

Uploaded CPython 3.9 Windows x86

amd_onnx_weekly-1.17.0.dev20240819-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.17.0.dev20240819-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.17.0.dev20240819-cp39-cp39-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.9 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.17.0.dev20240819-cp38-cp38-win32.whl (14.4 MB view details)

Uploaded CPython 3.8 Windows x86

amd_onnx_weekly-1.17.0.dev20240819-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.17.0.dev20240819-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.17.0.dev20240819-cp38-cp38-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.8 macOS 12.0+ universal2 (ARM64, x86-64)

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240819.tar.gz.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240819.tar.gz
Algorithm Hash digest
SHA256 964c1b6353f5855cb8b9dc60142efc33d88038831bf419805441cc13a5fb208e
MD5 5a0527c1593ac90043d05d4342319f6f
BLAKE2b-256 ade43420a990b7251d2f408c2c21b8aed88b2e17da78e807c348ca67bf249938

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240819-cp312-cp312-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240819-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 9cde02ad2f9cba578d3947687aba9231af27ace909445c402bcb4e499335a871
MD5 9475461e1720db70fe1b996834787c53
BLAKE2b-256 f0942b1540772b29bdf7715344cb46a772ca277fb55d2663f4abb9354bdc5c47

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240819-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240819-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f64af79123bc463d4b84486ba3f683d3ca233ad844d8f59d6d0d6623a5ce83e4
MD5 f8c948f5bada314c54286f278bd62bd5
BLAKE2b-256 702de24ca8d5268a7673b0dc835b2841f58bcd6fa5dfddf8910ffb340eb9466e

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240819-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240819-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 09db18640018942d643ff9fe7afbaf36ab43f548d994452fb307a8cc9662a8bc
MD5 f9c5e1cc2e59ab18f3e18a3a281c1ea7
BLAKE2b-256 42429ce0d04a4097de8d6f9c48b786e7901e0adee61838126ca73b55b8800d87

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240819-cp312-cp312-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240819-cp312-cp312-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 a4bab368d32986ec395faffa1fecc72826300171f05411f4ac4432f011f7bdf7
MD5 99cb03986293e89e71c44de7ac8f916a
BLAKE2b-256 1d4da0629570e66c21724920cc1f52aade807b00496513776611a6ae33bb7ca5

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240819-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240819-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 82eca499a7965d8f33ce1db021c28e88efe5d0576a530732640fc769da9fcdd4
MD5 c82fb8d63b86064664e8bec4136bf624
BLAKE2b-256 21fef875156611c37af9b41969b9c3c64c3bda4f996a84193018fb94b6990ac2

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240819-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240819-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 000d13c1e1fa16e9062fb979446797efa5408285d2bff124ace408db795c8bf9
MD5 242f97c16ff42cfaab19d4ec2e1fe27d
BLAKE2b-256 5cc127f11c892ba76cdc8937346d2025d0f4b53d95b28ed2941674fb7d669b7d

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240819-cp311-cp311-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240819-cp311-cp311-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 45073409b7142bccdbfbc444368ff15cd492be56f5f28b9924639ebeb93a5edf
MD5 953b6c027246dd1bfb979497bdf9695a
BLAKE2b-256 b24fd53b5da6dff1cc15f9b998737878ea559ffb5b50628662be10d73edd31e6

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240819-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240819-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 95a98835699ec5e80c3344b56538af4df8b9c5143fbe038e8c5919dfa023ef4a
MD5 23743c99c6d480bc09398b7658296d98
BLAKE2b-256 21335bd2b4cb32e5a4514af0b3426a54262d2bef6d25a19f1ad061f4a665b313

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240819-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240819-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 89a3f0aadf3fb31b6fb1d272de843641b2a3902192a1cb299fa39b3b5d334c55
MD5 95cc96940fd3601df56928249c73e2a9
BLAKE2b-256 ed052f37b63044700d0277394e92bf9997398b4a835a27311b734fa8c378d560

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240819-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240819-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 55b7474c169a2f50e7b4b94ba7716bf7ec411831337fde743160e9bb2d712249
MD5 fb063deacb4d2bb163c7aac4f350b5a1
BLAKE2b-256 902e5ea4c2f7c9fbe339ceb2245a6c26458bb502fd063a1dd4f275672f7e0f10

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240819-cp310-cp310-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240819-cp310-cp310-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 26122f09ed0c14635de4795a63563b7556933f61ae5e4161de32a772c59e6c0c
MD5 cdee8fc27f91a96c67abc9c780a7170f
BLAKE2b-256 dde45b11ff7d86f63450e48ff65aacce7069d4b7cdf9842f5958e174e2c2f761

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240819-cp39-cp39-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240819-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 5b1dcc38b3282e746aca7b2065bbc138c8978e3c57b765db4000d016f500fda5
MD5 29f91c5865228e24ba5d847843213fa3
BLAKE2b-256 4b2bedd4938f9240eeb58c0329dd7cf3da1ff088a20cc70c07953168506a0422

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240819-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240819-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f2b2b7560dcd6e12bc34aa267513dce1daf83d0071295d17b4d2f2d7e7d71899
MD5 fe378d1e56a7ae3b97e62ffa2c562f61
BLAKE2b-256 b697d739c8195b72f8fb1063c66713c2c4e4d5341c391c9dbd128143b6ab76d9

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240819-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240819-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d031da9e59a26e3d3d2abea089a1fc8162394e1ac38a0987a62588bad916f276
MD5 a69872cc8dcb37933adf1edf72526de6
BLAKE2b-256 738d75af54b6584e28d26aa7d90fa07e5b578fc59dc2a0ebebe31bfb3e805b62

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240819-cp39-cp39-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240819-cp39-cp39-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 b1ca877db8ed7cf7e692359d1e7399582a6a8bb458f9d2c4823aadc3190c1394
MD5 f4d3b7c4782fc2b1b0e024503ac67235
BLAKE2b-256 6a830c04196fc0eac6f1289698abcc3bde5e9868c721c68735f2a8d3925bc03e

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240819-cp38-cp38-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240819-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 536049792e846a613b5658f3dd10ebccbe5b38eb6ebb319d709642f35474b927
MD5 48521a5994b1800f2d68fde64b9a58e2
BLAKE2b-256 1744238ff585e9e55eb4ab32dc96f3a95dceab757eabae8107179830a6b36035

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240819-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240819-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fbd309691c4c7b90a255bafe17349bcb00105d34ebfd3cbc69308cb36aa6ded3
MD5 f8a360fbd497458fe83bbd3822a3cfb4
BLAKE2b-256 116c9fda544af55acba4ed8ba86319dda76d1fac480d91468994ff9defe1d9d2

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240819-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240819-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 978e0b0abb470fcfd24033bbbe23e8fa2c73a00d54f3c9e812b3b2fda345b3f6
MD5 a93a101e652e34dbe0b0d6cdd5cbf052
BLAKE2b-256 8408125c51c420a0934a545d6e98b04736d22b7d6b638e16f0f529138e3d38f3

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.17.0.dev20240819-cp38-cp38-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.17.0.dev20240819-cp38-cp38-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 c847400a05698853c99ee659480a9a9cb0bac75c4c591436f44b372f07f3e573
MD5 3cd6896f1c8704c841386346e03ff60f
BLAKE2b-256 a470b44c53e6d681df376c1904b3577c3d1a252326675524a4bc201bd8690d29

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page