Skip to main content

Open Neural Network Exchange

Project description

PyPI - Version CI CII Best Practices OpenSSF Scorecard REUSE compliant Ruff Black

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Currently we focus on the capabilities needed for inferencing (scoring).

ONNX is widely supported and can be found in many frameworks, tools, and hardware. Enabling interoperability between different frameworks and streamlining the path from research to production helps increase the speed of innovation in the AI community. We invite the community to join us and further evolve ONNX.

Use ONNX

Learn about the ONNX spec

Programming utilities for working with ONNX Graphs

Contribute

ONNX is a community project and the open governance model is described here. We encourage you to join the effort and contribute feedback, ideas, and code. You can participate in the Special Interest Groups and Working Groups to shape the future of ONNX.

Check out our contribution guide to get started.

If you think some operator should be added to ONNX specification, please read this document.

Community meetings

The schedules of the regular meetings of the Steering Committee, the working groups and the SIGs can be found here

Community Meetups are held at least once a year. Content from previous community meetups are at:

Discuss

We encourage you to open Issues, or use Slack (If you have not joined yet, please use this link to join the group) for more real-time discussion.

Follow Us

Stay up to date with the latest ONNX news. [Facebook] [Twitter]

Roadmap

A roadmap process takes place every year. More details can be found here

Installation

Official Python packages

ONNX released packages are published in PyPi.

pip install onnx  # or pip install onnx[reference] for optional reference implementation dependencies

AMD's ONNX weekly packages are published in PyPI to enable experimentation and early testing.

vcpkg packages

onnx is in the maintenance list of vcpkg, you can easily use vcpkg to build and install it.

git clone https://github.com/microsoft/vcpkg.git
cd vcpkg
./bootstrap-vcpkg.bat # For powershell
./bootstrap-vcpkg.sh # For bash
./vcpkg install onnx

Conda packages

A binary build of ONNX is available from Conda, in conda-forge:

conda install -c conda-forge onnx

Build ONNX from Source

Before building from source uninstall any existing versions of onnx pip uninstall onnx.

c++17 or higher C++ compiler version is required to build ONNX from source. Still, users can specify their own CMAKE_CXX_STANDARD version for building ONNX.

If you don't have protobuf installed, ONNX will internally download and build protobuf for ONNX build.

Or, you can manually install protobuf C/C++ libraries and tools with specified version before proceeding forward. Then depending on how you installed protobuf, you need to set environment variable CMAKE_ARGS to "-DONNX_USE_PROTOBUF_SHARED_LIBS=ON" or "-DONNX_USE_PROTOBUF_SHARED_LIBS=OFF". For example, you may need to run the following command:

Linux:

export CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

Windows:

set CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

The ON/OFF depends on what kind of protobuf library you have. Shared libraries are files ending with *.dll/*.so/*.dylib. Static libraries are files ending with *.a/*.lib. This option depends on how you get your protobuf library and how it was built. And it is default OFF. You don't need to run the commands above if you'd prefer to use a static protobuf library.

Windows

If you are building ONNX from source, it is recommended that you also build Protobuf locally as a static library. The version distributed with conda-forge is a DLL, but ONNX expects it to be a static library. Building protobuf locally also lets you control the version of protobuf. The tested and recommended version is 3.21.12.

The instructions in this README assume you are using Visual Studio. It is recommended that you run all the commands from a shell started from "x64 Native Tools Command Prompt for VS 2019" and keep the build system generator for cmake (e.g., cmake -G "Visual Studio 16 2019") consistent while building protobuf as well as ONNX.

You can get protobuf by running the following commands:

git clone https://github.com/protocolbuffers/protobuf.git
cd protobuf
git checkout v21.12
cd cmake
cmake -G "Visual Studio 16 2019" -A x64 -DCMAKE_INSTALL_PREFIX=<protobuf_install_dir> -Dprotobuf_MSVC_STATIC_RUNTIME=OFF -Dprotobuf_BUILD_SHARED_LIBS=OFF -Dprotobuf_BUILD_TESTS=OFF -Dprotobuf_BUILD_EXAMPLES=OFF .
msbuild protobuf.sln /m /p:Configuration=Release
msbuild INSTALL.vcxproj /p:Configuration=Release

Then it will be built as a static library and installed to <protobuf_install_dir>. Please add the bin directory(which contains protoc.exe) to your PATH.

set CMAKE_PREFIX_PATH=<protobuf_install_dir>;%CMAKE_PREFIX_PATH%

Please note: if your protobuf_install_dir contains spaces, do not add quotation marks around it.

Alternative: if you don't want to change your PATH, you can set ONNX_PROTOC_EXECUTABLE instead.

set CMAKE_ARGS=-DONNX_PROTOC_EXECUTABLE=<full_path_to_protoc.exe>

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Linux

First, you need to install protobuf. The minimum Protobuf compiler (protoc) version required by ONNX is 3.6.1. Please note that old protoc versions might not work with CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON.

Ubuntu 20.04 (and newer) users may choose to install protobuf via

apt-get install python3-pip python3-dev libprotobuf-dev protobuf-compiler

In this case, it is required to add -DONNX_USE_PROTOBUF_SHARED_LIBS=ON to CMAKE_ARGS in the ONNX build step.

A more general way is to build and install it from source. See the instructions below for more details.

Installing Protobuf from source

Debian/Ubuntu:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v21.12
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

CentOS/RHEL/Fedora:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v21.12
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake  -DCMAKE_INSTALL_LIBDIR=lib64 -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

Here "-DCMAKE_POSITION_INDEPENDENT_CODE=ON" is crucial. By default static libraries are built without "-fPIC" flag, they are not position independent code. But shared libraries must be position independent code. Python C/C++ extensions(like ONNX) are shared libraries. So if a static library was not built with "-fPIC", it can't be linked to such a shared library.

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# Optional: prefer lite proto
export CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Mac

export NUM_CORES=`sysctl -n hw.ncpu`
brew update
brew install autoconf && brew install automake
wget https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protobuf-cpp-3.21.12.tar.gz
tar -xvf protobuf-cpp-3.21.12.tar.gz
cd protobuf-3.21.12
mkdir build_source && cd build_source
cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
make -j${NUM_CORES}
make install

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone --recursive https://github.com/onnx/onnx.git
cd onnx
# Optional: prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Verify Installation

After installation, run

python -c "import onnx"

to verify it works.

Common Build Options

For full list refer to CMakeLists.txt

Environment variables

  • USE_MSVC_STATIC_RUNTIME should be 1 or 0, not ON or OFF. When set to 1 onnx links statically to runtime library. Default: USE_MSVC_STATIC_RUNTIME=0

  • DEBUG should be 0 or 1. When set to 1 onnx is built in debug mode. or debug versions of the dependencies, you need to open the CMakeLists file and append a letter d at the end of the package name lines. For example, NAMES protobuf-lite would become NAMES protobuf-lited. Default: Debug=0

CMake variables

  • ONNX_USE_PROTOBUF_SHARED_LIBS should be ON or OFF. Default: ONNX_USE_PROTOBUF_SHARED_LIBS=OFF USE_MSVC_STATIC_RUNTIME=0 ONNX_USE_PROTOBUF_SHARED_LIBS determines how onnx links to protobuf libraries.

    • When set to ON - onnx will dynamically link to protobuf shared libs, PROTOBUF_USE_DLLS will be defined as described here, Protobuf_USE_STATIC_LIBS will be set to OFF and USE_MSVC_STATIC_RUNTIME must be 0.
    • When set to OFF - onnx will link statically to protobuf, and Protobuf_USE_STATIC_LIBS will be set to ON (to force the use of the static libraries) and USE_MSVC_STATIC_RUNTIME can be 0 or 1.
  • ONNX_USE_LITE_PROTO should be ON or OFF. When set to ON onnx uses lite protobuf instead of full protobuf. Default: ONNX_USE_LITE_PROTO=OFF

  • ONNX_WERROR should be ON or OFF. When set to ON warnings are treated as errors. Default: ONNX_WERROR=OFF in local builds, ON in CI and release pipelines.

Common Errors

  • Note: the import onnx command does not work from the source checkout directory; in this case you'll see ModuleNotFoundError: No module named 'onnx.onnx_cpp2py_export'. Change into another directory to fix this error.

  • If you run into any issues while building Protobuf as a static library, please ensure that shared Protobuf libraries, like libprotobuf, are not installed on your device or in the conda environment. If these shared libraries exist, either remove them to build Protobuf from source as a static library, or skip the Protobuf build from source to use the shared version directly.

  • If you run into any issues while building ONNX from source, and your error message reads, Could not find pythonXX.lib, ensure that you have consistent Python versions for common commands, such as python and pip. Clean all existing build files and rebuild ONNX again.

Testing

ONNX uses pytest as test driver. In order to run tests, you will first need to install pytest:

pip install pytest nbval

After installing pytest, use the following command to run tests.

pytest

Development

Check out the contributor guide for instructions.

License

Apache License v2.0

Code of Conduct

ONNX Open Source Code of Conduct

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

amd_onnx_weekly-1.18.0.dev20240902.tar.gz (11.4 MB view details)

Uploaded Source

Built Distributions

amd_onnx_weekly-1.18.0.dev20240902-cp312-cp312-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

amd_onnx_weekly-1.18.0.dev20240902-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20240902-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20240902-cp312-cp312-macosx_12_0_universal2.whl (16.7 MB view details)

Uploaded CPython 3.12 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.18.0.dev20240902-cp311-cp311-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

amd_onnx_weekly-1.18.0.dev20240902-cp311-cp311-win32.whl (14.4 MB view details)

Uploaded CPython 3.11 Windows x86

amd_onnx_weekly-1.18.0.dev20240902-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20240902-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20240902-cp311-cp311-macosx_12_0_universal2.whl (16.7 MB view details)

Uploaded CPython 3.11 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.18.0.dev20240902-cp310-cp310-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

amd_onnx_weekly-1.18.0.dev20240902-cp310-cp310-win32.whl (14.4 MB view details)

Uploaded CPython 3.10 Windows x86

amd_onnx_weekly-1.18.0.dev20240902-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20240902-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20240902-cp310-cp310-macosx_12_0_universal2.whl (16.7 MB view details)

Uploaded CPython 3.10 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.18.0.dev20240902-cp39-cp39-win_amd64.whl (14.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

amd_onnx_weekly-1.18.0.dev20240902-cp39-cp39-win32.whl (14.4 MB view details)

Uploaded CPython 3.9 Windows x86

amd_onnx_weekly-1.18.0.dev20240902-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20240902-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20240902-cp39-cp39-macosx_12_0_universal2.whl (16.7 MB view details)

Uploaded CPython 3.9 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.18.0.dev20240902-cp38-cp38-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

amd_onnx_weekly-1.18.0.dev20240902-cp38-cp38-win32.whl (14.4 MB view details)

Uploaded CPython 3.8 Windows x86

amd_onnx_weekly-1.18.0.dev20240902-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20240902-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20240902-cp38-cp38-macosx_12_0_universal2.whl (16.7 MB view details)

Uploaded CPython 3.8 macOS 12.0+ universal2 (ARM64, x86-64)

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240902.tar.gz.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240902.tar.gz
Algorithm Hash digest
SHA256 5111155e6b883397842112523d5d6577af599e53e786bfa906661784be1172a5
MD5 1188f2366094498917d21f5355748783
BLAKE2b-256 4f72b57e0eff34a142def14142a1c4ac02c59eeb6329e2dc7071c2784d4da5be

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240902-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240902-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 8fbb1701ee503c4a45e2faa5b2f260ac74d4003414d3be8241258cbd19f7bb6a
MD5 4c2761f39d57919a3a0a533c1beef471
BLAKE2b-256 1af5f95eb4fa06ebe1a110cfe4aa527a15ee0443c0b5c51d9065abfdb9d7960b

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240902-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240902-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f10732aee5b810dbc2d348cd4c9088e1767afd97bafee6127bb3ae61bdd501ba
MD5 32c8ff402bb4e8d001204ac8ceda1a18
BLAKE2b-256 bbc16f6bf77c829bcb92058b3da52de64c2318154c8de7f1b3722c83b0062976

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240902-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240902-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 50c38c909da927632918e9348b803f8bdcb03ce5129e7418303d15ed7ae06851
MD5 7c39686843a3e8b285227090fb7df49c
BLAKE2b-256 3e1af5a29bccd816e1c3af0e45e0ddbd3a033aff33326f83e9a0bc12f0064264

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240902-cp312-cp312-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240902-cp312-cp312-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 3930b36ef2fc59966b1a9f1229f622ce09c620d9743f43be0e5ad34d86d7b065
MD5 a9373283f4271910f7de8d01621b3b5e
BLAKE2b-256 dcc9aadac91a584b860d3bd91c5e9d41f326987cbc607539dc715d0d695b1958

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240902-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240902-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 491d8c9f410cae40e2945d0920ea0155a9ef314b117aa0c20a40d5b13ad93e78
MD5 66779025e9c163b374f62b51b23a6e88
BLAKE2b-256 fd8b50652328a47393fc8e519e97a76ebcc70c1d58fc35e10a82f884bb26d1a4

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240902-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240902-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 e8f1961b69f042f5f9ada4a362a443aa2c95205a451ed676a7b44de4e6bf0ddd
MD5 487f9db1852a98b1df8e16ae66f9ca1f
BLAKE2b-256 cb1e3e979a807d8dabc14078070ffb2801d004bce7b006f0cc5997744cded525

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240902-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240902-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5c1ba83681fa9d5950b0b01e8c123e2f478f8cbb49862f77e4b094247a5a47ff
MD5 132ee0471f4ee5348660a1bad9ab1b5f
BLAKE2b-256 546729bb023c2a570658e1f91efac20ec5b615aa67a00b840602ea5a3e3dd874

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240902-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240902-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 94c637fb0e71685aa4a7bba3599e04cdcad40f899c133d05c9d0410a5586e0b8
MD5 6517c6195a2842d0230933afc8571f46
BLAKE2b-256 f78642a3919c6e7f3cb16d72a1a75961fa527cce05479e57aa0fab5a5fb7f10e

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240902-cp311-cp311-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240902-cp311-cp311-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 ab50111269c11eee6e85922fad0df59f8923629da3861262b74c224ba4e03a86
MD5 3a322922712b6a6929ff9c04c22418c5
BLAKE2b-256 60dfd9c7cbd0299045e1269caae1d787d7303dd66b89aac3797eeadbe363eb9a

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240902-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240902-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 0cd61da4d836830bb93e4f9871f045ee3f04a4f68afc73e41f8d1fc8299a4441
MD5 9cba74fb7180ef1baf28fe6567cca1c8
BLAKE2b-256 ec9f6059b153fd89f04ba09d1e41316ffa61d00eceb3e01d8c6f25fa2da8bf56

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240902-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240902-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 c4a10b245b26f9dff5b0317d392f0f03772b4fd92d7b3366efb7070dca317e21
MD5 b3950c2e9a3af2495de1995ca0c2cec1
BLAKE2b-256 00e7c47ae85a722871325a1b62ce36eb7915990a83db49827b0f3228482c28d0

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240902-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240902-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 22e859f6e3cadb588e2dfba9b2c52bdf88c975bdff2e16f1d6dfe3f4f26fecf6
MD5 8d5c859a5bd98ad5a819fe526daeb2f1
BLAKE2b-256 3ce09ae7925898e250dd8002d255fe9bae9306d41d0cbca7706813dab85ac22d

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240902-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240902-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1f2b0084949665f8f6b3e9182c539a068ad553d501dfc315ddf15cd98202b69f
MD5 e1b3a393e6f8ae555d716ca585293a63
BLAKE2b-256 12e044868739eb99a168ca7ac851d00b84632a7ee59661fd78328e1afaa9c357

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240902-cp310-cp310-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240902-cp310-cp310-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 35f1f42d725ebec5db9fec49d09e5e427e801d35611f080a128c8175aeead5f8
MD5 8aae4d3c1c6e5f801015b9e2a3dee7cd
BLAKE2b-256 dc543d8b66bcfec370b507423b2dcbe0d7ffa05d1b79f11d8ab5697a4040525c

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240902-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240902-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6614efbd86c6ca82518480df8a20e2adf1e07ee1fe7f2712c017f0ded22400e3
MD5 0cdf242606c7abe7ea01a852efb1e675
BLAKE2b-256 0f1e94f5b43802b33f8db23e55d46a33aa41a760ff99cd1950377692554ab4db

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240902-cp39-cp39-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240902-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 2087d448da18ac4ed48bf3cf3b84ee34ddc90fdfdb4c80e3a10fed4071d2e4df
MD5 6c9d22fe142f47d3fedd5a2e8aefa1a9
BLAKE2b-256 ae7897d05da97245dcb94c028c1088040dd1580d5441a37aa351801cc168791e

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240902-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240902-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 88b7eec9bdde93c096c7937631e30d6c33575a543eb8432179957a9e71bf635a
MD5 7633957d63b1bf83db91c89b0f174392
BLAKE2b-256 2d4ffa295b12f0ec8290ad769421273196d7f0c720c3a928f7629ca19cab844a

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240902-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240902-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7125506f85be44bce7d40184b41e849f0cd6945b408096370ab32f56c033fc88
MD5 b7891ac17085d0420f58568ae3ea4ec3
BLAKE2b-256 98ec9fa21b54aeea94b7cc3b84ecaae9df22ac4667bd98234ffd0d545ec51116

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240902-cp39-cp39-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240902-cp39-cp39-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 36cb5f474bd2c2f5f57d5f840b0e850ddb0291f9fb16126afdca1bd4c713a744
MD5 5f39507ff3c72bed726e32985339d493
BLAKE2b-256 5f23fcb7c5240c207aab3e009c925fd3eaa54ad4da9528391236f4279cf664f8

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240902-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240902-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c5a258c734a2d2bfc9f1550a39aa798ba15064803888c57273206cc9ec50b512
MD5 56397c140eb2837f3086a1ed7a45ef66
BLAKE2b-256 587dc6d979499cdbb8c55ec876e7ba6ab1ecad52a4107511d72836ce9a801881

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240902-cp38-cp38-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240902-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 bdd00f5d595c2a2507fa433f790f5571d600dc4b1924b50d9740f1ff69f94f6a
MD5 6dd7e9dd0bc058342bb9f5a193be3873
BLAKE2b-256 76bb2731ae3d0a7508bc83165223d3ef9b52572647b675a1a1e71b09c85d044c

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240902-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240902-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9decbaaa56d5445144da06476275ad6d5eddd1e32e860667cf8f0a712d63b1cb
MD5 9338f4f24479f209e4f4c981c1396a25
BLAKE2b-256 022150deb08981f164684e8109b49dcdd6c0f116fe329fa32e1e513fc60b3069

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240902-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240902-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 91419e12b7d05f180a0c143700f6277e0baad20527ba3c633daf23bfb6f476aa
MD5 2c0d0a9c758530175f3095e63922d570
BLAKE2b-256 673338ae8e40ff1b859d35faa950c703c2151d4d33c578fecf9443afe634da77

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240902-cp38-cp38-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240902-cp38-cp38-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 778ab80387cae9cc632f9ee1f4a46751d96c9f9858b08c9364c394a994e60a49
MD5 5e5a27693ad45c289d2a8a18b0a5c5c8
BLAKE2b-256 1455f07479f03e9deb6716472692aba237281ab862fa99109ea465e138bc8a3c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page