Skip to main content

Open Neural Network Exchange

Project description

PyPI - Version CI CII Best Practices OpenSSF Scorecard REUSE compliant Ruff Black

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Currently we focus on the capabilities needed for inferencing (scoring).

ONNX is widely supported and can be found in many frameworks, tools, and hardware. Enabling interoperability between different frameworks and streamlining the path from research to production helps increase the speed of innovation in the AI community. We invite the community to join us and further evolve ONNX.

Use ONNX

Learn about the ONNX spec

Programming utilities for working with ONNX Graphs

Contribute

ONNX is a community project and the open governance model is described here. We encourage you to join the effort and contribute feedback, ideas, and code. You can participate in the Special Interest Groups and Working Groups to shape the future of ONNX.

Check out our contribution guide to get started.

If you think some operator should be added to ONNX specification, please read this document.

Community meetings

The schedules of the regular meetings of the Steering Committee, the working groups and the SIGs can be found here

Community Meetups are held at least once a year. Content from previous community meetups are at:

Discuss

We encourage you to open Issues, or use Slack (If you have not joined yet, please use this link to join the group) for more real-time discussion.

Follow Us

Stay up to date with the latest ONNX news. [Facebook] [Twitter]

Roadmap

A roadmap process takes place every year. More details can be found here

Installation

Official Python packages

ONNX released packages are published in PyPi.

pip install onnx  # or pip install onnx[reference] for optional reference implementation dependencies

AMD's ONNX weekly packages are published in PyPI to enable experimentation and early testing.

vcpkg packages

onnx is in the maintenance list of vcpkg, you can easily use vcpkg to build and install it.

git clone https://github.com/microsoft/vcpkg.git
cd vcpkg
./bootstrap-vcpkg.bat # For powershell
./bootstrap-vcpkg.sh # For bash
./vcpkg install onnx

Conda packages

A binary build of ONNX is available from Conda, in conda-forge:

conda install -c conda-forge onnx

Build ONNX from Source

Before building from source uninstall any existing versions of onnx pip uninstall onnx.

c++17 or higher C++ compiler version is required to build ONNX from source. Still, users can specify their own CMAKE_CXX_STANDARD version for building ONNX.

If you don't have protobuf installed, ONNX will internally download and build protobuf for ONNX build.

Or, you can manually install protobuf C/C++ libraries and tools with specified version before proceeding forward. Then depending on how you installed protobuf, you need to set environment variable CMAKE_ARGS to "-DONNX_USE_PROTOBUF_SHARED_LIBS=ON" or "-DONNX_USE_PROTOBUF_SHARED_LIBS=OFF". For example, you may need to run the following command:

Linux:

export CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

Windows:

set CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

The ON/OFF depends on what kind of protobuf library you have. Shared libraries are files ending with *.dll/*.so/*.dylib. Static libraries are files ending with *.a/*.lib. This option depends on how you get your protobuf library and how it was built. And it is default OFF. You don't need to run the commands above if you'd prefer to use a static protobuf library.

Windows

If you are building ONNX from source, it is recommended that you also build Protobuf locally as a static library. The version distributed with conda-forge is a DLL, but ONNX expects it to be a static library. Building protobuf locally also lets you control the version of protobuf. The tested and recommended version is 3.21.12.

The instructions in this README assume you are using Visual Studio. It is recommended that you run all the commands from a shell started from "x64 Native Tools Command Prompt for VS 2019" and keep the build system generator for cmake (e.g., cmake -G "Visual Studio 16 2019") consistent while building protobuf as well as ONNX.

You can get protobuf by running the following commands:

git clone https://github.com/protocolbuffers/protobuf.git
cd protobuf
git checkout v21.12
cd cmake
cmake -G "Visual Studio 16 2019" -A x64 -DCMAKE_INSTALL_PREFIX=<protobuf_install_dir> -Dprotobuf_MSVC_STATIC_RUNTIME=OFF -Dprotobuf_BUILD_SHARED_LIBS=OFF -Dprotobuf_BUILD_TESTS=OFF -Dprotobuf_BUILD_EXAMPLES=OFF .
msbuild protobuf.sln /m /p:Configuration=Release
msbuild INSTALL.vcxproj /p:Configuration=Release

Then it will be built as a static library and installed to <protobuf_install_dir>. Please add the bin directory(which contains protoc.exe) to your PATH.

set CMAKE_PREFIX_PATH=<protobuf_install_dir>;%CMAKE_PREFIX_PATH%

Please note: if your protobuf_install_dir contains spaces, do not add quotation marks around it.

Alternative: if you don't want to change your PATH, you can set ONNX_PROTOC_EXECUTABLE instead.

set CMAKE_ARGS=-DONNX_PROTOC_EXECUTABLE=<full_path_to_protoc.exe>

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Linux

First, you need to install protobuf. The minimum Protobuf compiler (protoc) version required by ONNX is 3.6.1. Please note that old protoc versions might not work with CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON.

Ubuntu 20.04 (and newer) users may choose to install protobuf via

apt-get install python3-pip python3-dev libprotobuf-dev protobuf-compiler

In this case, it is required to add -DONNX_USE_PROTOBUF_SHARED_LIBS=ON to CMAKE_ARGS in the ONNX build step.

A more general way is to build and install it from source. See the instructions below for more details.

Installing Protobuf from source

Debian/Ubuntu:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v21.12
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

CentOS/RHEL/Fedora:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v21.12
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake  -DCMAKE_INSTALL_LIBDIR=lib64 -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

Here "-DCMAKE_POSITION_INDEPENDENT_CODE=ON" is crucial. By default static libraries are built without "-fPIC" flag, they are not position independent code. But shared libraries must be position independent code. Python C/C++ extensions(like ONNX) are shared libraries. So if a static library was not built with "-fPIC", it can't be linked to such a shared library.

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# Optional: prefer lite proto
export CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Mac

export NUM_CORES=`sysctl -n hw.ncpu`
brew update
brew install autoconf && brew install automake
wget https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protobuf-cpp-3.21.12.tar.gz
tar -xvf protobuf-cpp-3.21.12.tar.gz
cd protobuf-3.21.12
mkdir build_source && cd build_source
cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
make -j${NUM_CORES}
make install

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone --recursive https://github.com/onnx/onnx.git
cd onnx
# Optional: prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Verify Installation

After installation, run

python -c "import onnx"

to verify it works.

Common Build Options

For full list refer to CMakeLists.txt

Environment variables

  • USE_MSVC_STATIC_RUNTIME should be 1 or 0, not ON or OFF. When set to 1 onnx links statically to runtime library. Default: USE_MSVC_STATIC_RUNTIME=0

  • DEBUG should be 0 or 1. When set to 1 onnx is built in debug mode. or debug versions of the dependencies, you need to open the CMakeLists file and append a letter d at the end of the package name lines. For example, NAMES protobuf-lite would become NAMES protobuf-lited. Default: Debug=0

CMake variables

  • ONNX_USE_PROTOBUF_SHARED_LIBS should be ON or OFF. Default: ONNX_USE_PROTOBUF_SHARED_LIBS=OFF USE_MSVC_STATIC_RUNTIME=0 ONNX_USE_PROTOBUF_SHARED_LIBS determines how onnx links to protobuf libraries.

    • When set to ON - onnx will dynamically link to protobuf shared libs, PROTOBUF_USE_DLLS will be defined as described here, Protobuf_USE_STATIC_LIBS will be set to OFF and USE_MSVC_STATIC_RUNTIME must be 0.
    • When set to OFF - onnx will link statically to protobuf, and Protobuf_USE_STATIC_LIBS will be set to ON (to force the use of the static libraries) and USE_MSVC_STATIC_RUNTIME can be 0 or 1.
  • ONNX_USE_LITE_PROTO should be ON or OFF. When set to ON onnx uses lite protobuf instead of full protobuf. Default: ONNX_USE_LITE_PROTO=OFF

  • ONNX_WERROR should be ON or OFF. When set to ON warnings are treated as errors. Default: ONNX_WERROR=OFF in local builds, ON in CI and release pipelines.

Common Errors

  • Note: the import onnx command does not work from the source checkout directory; in this case you'll see ModuleNotFoundError: No module named 'onnx.onnx_cpp2py_export'. Change into another directory to fix this error.

  • If you run into any issues while building Protobuf as a static library, please ensure that shared Protobuf libraries, like libprotobuf, are not installed on your device or in the conda environment. If these shared libraries exist, either remove them to build Protobuf from source as a static library, or skip the Protobuf build from source to use the shared version directly.

  • If you run into any issues while building ONNX from source, and your error message reads, Could not find pythonXX.lib, ensure that you have consistent Python versions for common commands, such as python and pip. Clean all existing build files and rebuild ONNX again.

Testing

ONNX uses pytest as test driver. In order to run tests, you will first need to install pytest:

pip install pytest nbval

After installing pytest, use the following command to run tests.

pytest

Development

Check out the contributor guide for instructions.

License

Apache License v2.0

Code of Conduct

ONNX Open Source Code of Conduct

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

amd_onnx_weekly-1.18.0.dev20240909.tar.gz (11.4 MB view details)

Uploaded Source

Built Distributions

amd_onnx_weekly-1.18.0.dev20240909-cp312-cp312-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

amd_onnx_weekly-1.18.0.dev20240909-cp312-cp312-win32.whl (14.4 MB view details)

Uploaded CPython 3.12 Windows x86

amd_onnx_weekly-1.18.0.dev20240909-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20240909-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20240909-cp312-cp312-macosx_12_0_universal2.whl (16.7 MB view details)

Uploaded CPython 3.12 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.18.0.dev20240909-cp311-cp311-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

amd_onnx_weekly-1.18.0.dev20240909-cp311-cp311-win32.whl (14.4 MB view details)

Uploaded CPython 3.11 Windows x86

amd_onnx_weekly-1.18.0.dev20240909-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20240909-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20240909-cp311-cp311-macosx_12_0_universal2.whl (16.7 MB view details)

Uploaded CPython 3.11 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.18.0.dev20240909-cp310-cp310-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

amd_onnx_weekly-1.18.0.dev20240909-cp310-cp310-win32.whl (14.4 MB view details)

Uploaded CPython 3.10 Windows x86

amd_onnx_weekly-1.18.0.dev20240909-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20240909-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20240909-cp310-cp310-macosx_12_0_universal2.whl (16.7 MB view details)

Uploaded CPython 3.10 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.18.0.dev20240909-cp39-cp39-win_amd64.whl (14.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

amd_onnx_weekly-1.18.0.dev20240909-cp39-cp39-win32.whl (14.4 MB view details)

Uploaded CPython 3.9 Windows x86

amd_onnx_weekly-1.18.0.dev20240909-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20240909-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20240909-cp39-cp39-macosx_12_0_universal2.whl (16.7 MB view details)

Uploaded CPython 3.9 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.18.0.dev20240909-cp38-cp38-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

amd_onnx_weekly-1.18.0.dev20240909-cp38-cp38-win32.whl (14.4 MB view details)

Uploaded CPython 3.8 Windows x86

amd_onnx_weekly-1.18.0.dev20240909-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20240909-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20240909-cp38-cp38-macosx_12_0_universal2.whl (16.7 MB view details)

Uploaded CPython 3.8 macOS 12.0+ universal2 (ARM64, x86-64)

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240909.tar.gz.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240909.tar.gz
Algorithm Hash digest
SHA256 4b21a44ba84a56ead214db34cb5f8a3036d6f987b11f1e4f7b6646acd77e3946
MD5 d4bc0119a09304a488be70542138187e
BLAKE2b-256 148f8dec61c4dfb83ef61959aebac256934e7f8c6aab9cef422b82bba7e5995b

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240909-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240909-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 c2057872a59710729664c50414617d5cf77f777932d2d3943dfd7a25e79a2724
MD5 1aca09a3d7f521cf9df9ed23d19dc4f5
BLAKE2b-256 880eb24211961462d611f82c7c325af8c3928a2034c89b428c78b482eed159a0

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240909-cp312-cp312-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240909-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 b3b44f79db1b988864b69a0d7f29738b18ea5cf932e55f4c14391f25a9d2d1e3
MD5 bb6ab5b2d09d325f1339b2b5a044fb41
BLAKE2b-256 e9d345053f2d36afc8736844b2f87b766f26f1535e3f52baab40839aaa921c43

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240909-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240909-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a52af14bbdef19a654df8a0c233401117df9ff940cc156d36d179f07005c061f
MD5 c1cbf2d4d61c7282a3a56f88d0598ceb
BLAKE2b-256 b987a721c7e78220c113de13428569e66dfd86cb0719b2d7efd363487ac72bb6

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240909-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240909-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bf5c66cad4a10e2b18fdd36d74880e7c7fbb527f89e99eaea6b77f0949afc8ec
MD5 c343b290d2d55c0a5f402f312c301bd0
BLAKE2b-256 ff1e312086248e404365c600c7edab8bbe8c303a128a7644b4260ceb1b1434a1

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240909-cp312-cp312-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240909-cp312-cp312-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 54de237c3b9555343bb8a762f0d97166d4398f05d5298f99566f1398d86bd7d5
MD5 42dfaacf1234be3ef1dfe5d85dfe9037
BLAKE2b-256 dd563fa4c1a7378358d7bca13f9a7716b109e671a909d2d14371d60841a7300d

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240909-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240909-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 930b460fbfb6b85c5ee644a20a16e484ef71d6dec8b66dd168f3c231853294c9
MD5 2e0df45e8ee221cf52c09aa142ce883d
BLAKE2b-256 c5668181470890a6a23636f792c8e238a5095133103fae669633ce607aeeefb5

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240909-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240909-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 d81d281cf40732cb749a74afc529f6b4dbc117ff4beaddc34d0eeb81140aa3f9
MD5 15eb97bd178f226548e78e4f1e906e2b
BLAKE2b-256 d49be67d5186e880a0d5d2a7edc895ffda526ed87626230c24fddec1d7c28f4f

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240909-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240909-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9b5eb259f23256f1b5c326db8e67ea7ab23a6b47dad252e04778d5cb8dc3549a
MD5 d60f3289d61c643b87eb40f1e1afd69b
BLAKE2b-256 f9a392861356fc1a60e278e162d4404938b9a5b66712c7793a28e55128e6d7e0

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240909-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240909-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 81cb1000468ed8a49388cdaef9ffc63345f1d9f6c2c812206adaf343ff86672a
MD5 d1e5028482a4919a095edac1dd29943c
BLAKE2b-256 c17bb96948c4505a7d2c705e9f60ad8d7e54c2cfb75eb1c4918924b724ad91a5

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240909-cp311-cp311-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240909-cp311-cp311-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 1ea19ba094cb20f53765e84c8b07db8b5bd10ba90cd06fe2b7b2a03fc407bb40
MD5 a320e73324b62c0df9e6112bac2e3c98
BLAKE2b-256 3693150ac18f6185a4861030a141038b61b52f476ef05f62f48c1321a183b9e4

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240909-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240909-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 8f056702b461ef6fcd8ea47d76d6943d2eeb36e00bae5ec20e474b8446a5d0f1
MD5 3042d479f74548b0cd4e2005a07f224c
BLAKE2b-256 d762496ccbc07922b1b4b120e19fad7a74e21a7be454ee1115531dac353c2f7d

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240909-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240909-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 5f06564b7dad4aca7318877a07cc20465f7d8cf78dc75463531f661aef5b7f6b
MD5 81608ef42bb898f554e7e80e10ef4c9f
BLAKE2b-256 505f0da2b991faef7e60bb08f090ca1761da015d929eeedfdb40fc0d013b3a2d

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240909-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240909-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ee8842e729fe1f7a49a8eead773a6545309fe5d55c85109157b420bf89863bec
MD5 f8c5a6200cf1e498343ac6367d806d09
BLAKE2b-256 f4f7ca879b4acfc5e271f7f17e510f7c7cb56ac6fdc7f5ed2772f4e977ddbb2b

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240909-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240909-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 dc42b177522a6c233ce58fe7d5967ac053a2f656709ed1e256deeed7b7ece53d
MD5 d6d512ad34517bc291d0112c99a7400b
BLAKE2b-256 9be32ff84195f4b0ccbd46bc31a27cf00306227d3e21b692cc96cbd654a87433

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240909-cp310-cp310-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240909-cp310-cp310-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 8cec0fee13ec3e49a77f9bbb14d21de350110a77556b2088ef21c90779fec7c7
MD5 ce62f3823bbda5e0a40abf7c4070c561
BLAKE2b-256 ebdd06832adef424e4911db16ace5513f75965e5feb35da3c90a7c35d348de43

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240909-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240909-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 4e40c068327ccfa630aa8e778ca4b3cc59ad4d2488cb02f5f8799ccdf031e09b
MD5 e2581faabd85a8857a81873bdc4b693d
BLAKE2b-256 3aeac5b7d5778c9fea72725bdca2bc9e3cb64e1b2c02fa8da7546bcb1486b1a9

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240909-cp39-cp39-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240909-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 47365a6f08a57f9e4bb2fa26f8ff89583fb90897d7ef5219d8f60a40296fb8f7
MD5 4a1f7f4dc713ba8848d6f605f2eb7fe0
BLAKE2b-256 10c7a7d021ed73cb1a8e00f8fac47c13f6474b577b02f28ad35ac95d775f1c46

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240909-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240909-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8083d35cea0ceb260992b44087c5b8adbd690d329c681661c876a645beb3d3f6
MD5 94c478bfe29a20ef341e60c958c1936b
BLAKE2b-256 7002ec29768c0689925cfd832587f20ca92b605d61ddc015566f7de13e886b85

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240909-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240909-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 107a5389183bad21445757c08a432b0b90a08edca5825824cd6c752b18ff0baf
MD5 dcae83c432bc6acbac92666abbc15f10
BLAKE2b-256 bb0b124756cf2fe29dda4d264a3661b5d4355aea4775304a8ad4901acc8c0a76

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240909-cp39-cp39-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240909-cp39-cp39-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 db57168b0e8fd01d853a583afa209a1e2d8b8df10b4bd2746e7a6439b2553b30
MD5 2a6e9af5bb137f58c5c3bf6eeb7a3893
BLAKE2b-256 5e28db53156b5f6cc3e9bd7a58f107d531aae4fee331cbd5f209ac26151af3e2

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240909-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240909-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 bc5a1578e08f582025d1813aa528a22c28121c76174e4f074434ed899df0fe3d
MD5 1f0c6d51fe1ca31b6434b06bfc82f563
BLAKE2b-256 cfa19f218dacd1a2b2e413e5011a833ce28ce6bc287d7cd03d87347e54403987

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240909-cp38-cp38-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240909-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 7c91cc49ecec3193fdbcae00eb2f5a427733bcb5c9e126a38a1b560749f40193
MD5 0c95070277c58397c318367d460087c7
BLAKE2b-256 07b7bd29ed1e12664859eeff3feb62f7db7a4aa8465503177e99a28826d0eb29

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240909-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240909-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8f73a845280671bd8a5b2cd2198d1cb9613334690af70e05728abfff089481fe
MD5 0b58c361a9b77b84ba420b95f24ca082
BLAKE2b-256 c004140d349de4296d2b5b59bfe5665c6309730367f1f8deead4845850d07ad6

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240909-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240909-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 383b26bbb7c08cc0aa20edaefe3abcd61d7a223aaa490eef4352fc7cf8d7f9a5
MD5 7c6ab6b9b9ccd6e1233367b6012fc4d0
BLAKE2b-256 d9973370bda78cd6d6de9d5c2960471590d245d6c23ca14e66c7ea4959073bad

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240909-cp38-cp38-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240909-cp38-cp38-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 f518e91c196f65a9cc4b5864e0f777e43636a8f1d54dbf20d0df892d087e2394
MD5 2abc501552c6cb3f273291f183824328
BLAKE2b-256 bb8d37edec74dfc2310c4547f25541207e316fdcb04e2eee0537905686f7fe8e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page