Skip to main content

Open Neural Network Exchange

Project description

PyPI - Version CI CII Best Practices OpenSSF Scorecard REUSE compliant Ruff Black

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Currently we focus on the capabilities needed for inferencing (scoring).

ONNX is widely supported and can be found in many frameworks, tools, and hardware. Enabling interoperability between different frameworks and streamlining the path from research to production helps increase the speed of innovation in the AI community. We invite the community to join us and further evolve ONNX.

Use ONNX

Learn about the ONNX spec

Programming utilities for working with ONNX Graphs

Contribute

ONNX is a community project and the open governance model is described here. We encourage you to join the effort and contribute feedback, ideas, and code. You can participate in the Special Interest Groups and Working Groups to shape the future of ONNX.

Check out our contribution guide to get started.

If you think some operator should be added to ONNX specification, please read this document.

Community meetings

The schedules of the regular meetings of the Steering Committee, the working groups and the SIGs can be found here

Community Meetups are held at least once a year. Content from previous community meetups are at:

Discuss

We encourage you to open Issues, or use Slack (If you have not joined yet, please use this link to join the group) for more real-time discussion.

Follow Us

Stay up to date with the latest ONNX news. [Facebook] [Twitter]

Roadmap

A roadmap process takes place every year. More details can be found here

Installation

Official Python packages

ONNX released packages are published in PyPi.

pip install onnx  # or pip install onnx[reference] for optional reference implementation dependencies

AMD's ONNX weekly packages are published in PyPI to enable experimentation and early testing.

vcpkg packages

onnx is in the maintenance list of vcpkg, you can easily use vcpkg to build and install it.

git clone https://github.com/microsoft/vcpkg.git
cd vcpkg
./bootstrap-vcpkg.bat # For powershell
./bootstrap-vcpkg.sh # For bash
./vcpkg install onnx

Conda packages

A binary build of ONNX is available from Conda, in conda-forge:

conda install -c conda-forge onnx

Build ONNX from Source

Before building from source uninstall any existing versions of onnx pip uninstall onnx.

c++17 or higher C++ compiler version is required to build ONNX from source. Still, users can specify their own CMAKE_CXX_STANDARD version for building ONNX.

If you don't have protobuf installed, ONNX will internally download and build protobuf for ONNX build.

Or, you can manually install protobuf C/C++ libraries and tools with specified version before proceeding forward. Then depending on how you installed protobuf, you need to set environment variable CMAKE_ARGS to "-DONNX_USE_PROTOBUF_SHARED_LIBS=ON" or "-DONNX_USE_PROTOBUF_SHARED_LIBS=OFF". For example, you may need to run the following command:

Linux:

export CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

Windows:

set CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

The ON/OFF depends on what kind of protobuf library you have. Shared libraries are files ending with *.dll/*.so/*.dylib. Static libraries are files ending with *.a/*.lib. This option depends on how you get your protobuf library and how it was built. And it is default OFF. You don't need to run the commands above if you'd prefer to use a static protobuf library.

Windows

If you are building ONNX from source, it is recommended that you also build Protobuf locally as a static library. The version distributed with conda-forge is a DLL, but ONNX expects it to be a static library. Building protobuf locally also lets you control the version of protobuf. The tested and recommended version is 3.21.12.

The instructions in this README assume you are using Visual Studio. It is recommended that you run all the commands from a shell started from "x64 Native Tools Command Prompt for VS 2019" and keep the build system generator for cmake (e.g., cmake -G "Visual Studio 16 2019") consistent while building protobuf as well as ONNX.

You can get protobuf by running the following commands:

git clone https://github.com/protocolbuffers/protobuf.git
cd protobuf
git checkout v21.12
cd cmake
cmake -G "Visual Studio 16 2019" -A x64 -DCMAKE_INSTALL_PREFIX=<protobuf_install_dir> -Dprotobuf_MSVC_STATIC_RUNTIME=OFF -Dprotobuf_BUILD_SHARED_LIBS=OFF -Dprotobuf_BUILD_TESTS=OFF -Dprotobuf_BUILD_EXAMPLES=OFF .
msbuild protobuf.sln /m /p:Configuration=Release
msbuild INSTALL.vcxproj /p:Configuration=Release

Then it will be built as a static library and installed to <protobuf_install_dir>. Please add the bin directory(which contains protoc.exe) to your PATH.

set CMAKE_PREFIX_PATH=<protobuf_install_dir>;%CMAKE_PREFIX_PATH%

Please note: if your protobuf_install_dir contains spaces, do not add quotation marks around it.

Alternative: if you don't want to change your PATH, you can set ONNX_PROTOC_EXECUTABLE instead.

set CMAKE_ARGS=-DONNX_PROTOC_EXECUTABLE=<full_path_to_protoc.exe>

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Linux

First, you need to install protobuf. The minimum Protobuf compiler (protoc) version required by ONNX is 3.6.1. Please note that old protoc versions might not work with CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON.

Ubuntu 20.04 (and newer) users may choose to install protobuf via

apt-get install python3-pip python3-dev libprotobuf-dev protobuf-compiler

In this case, it is required to add -DONNX_USE_PROTOBUF_SHARED_LIBS=ON to CMAKE_ARGS in the ONNX build step.

A more general way is to build and install it from source. See the instructions below for more details.

Installing Protobuf from source

Debian/Ubuntu:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v21.12
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

CentOS/RHEL/Fedora:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v21.12
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake  -DCMAKE_INSTALL_LIBDIR=lib64 -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

Here "-DCMAKE_POSITION_INDEPENDENT_CODE=ON" is crucial. By default static libraries are built without "-fPIC" flag, they are not position independent code. But shared libraries must be position independent code. Python C/C++ extensions(like ONNX) are shared libraries. So if a static library was not built with "-fPIC", it can't be linked to such a shared library.

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# Optional: prefer lite proto
export CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Mac

export NUM_CORES=`sysctl -n hw.ncpu`
brew update
brew install autoconf && brew install automake
wget https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protobuf-cpp-3.21.12.tar.gz
tar -xvf protobuf-cpp-3.21.12.tar.gz
cd protobuf-3.21.12
mkdir build_source && cd build_source
cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
make -j${NUM_CORES}
make install

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone --recursive https://github.com/onnx/onnx.git
cd onnx
# Optional: prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Verify Installation

After installation, run

python -c "import onnx"

to verify it works.

Common Build Options

For full list refer to CMakeLists.txt

Environment variables

  • USE_MSVC_STATIC_RUNTIME should be 1 or 0, not ON or OFF. When set to 1 onnx links statically to runtime library. Default: USE_MSVC_STATIC_RUNTIME=0

  • DEBUG should be 0 or 1. When set to 1 onnx is built in debug mode. or debug versions of the dependencies, you need to open the CMakeLists file and append a letter d at the end of the package name lines. For example, NAMES protobuf-lite would become NAMES protobuf-lited. Default: Debug=0

CMake variables

  • ONNX_USE_PROTOBUF_SHARED_LIBS should be ON or OFF. Default: ONNX_USE_PROTOBUF_SHARED_LIBS=OFF USE_MSVC_STATIC_RUNTIME=0 ONNX_USE_PROTOBUF_SHARED_LIBS determines how onnx links to protobuf libraries.

    • When set to ON - onnx will dynamically link to protobuf shared libs, PROTOBUF_USE_DLLS will be defined as described here, Protobuf_USE_STATIC_LIBS will be set to OFF and USE_MSVC_STATIC_RUNTIME must be 0.
    • When set to OFF - onnx will link statically to protobuf, and Protobuf_USE_STATIC_LIBS will be set to ON (to force the use of the static libraries) and USE_MSVC_STATIC_RUNTIME can be 0 or 1.
  • ONNX_USE_LITE_PROTO should be ON or OFF. When set to ON onnx uses lite protobuf instead of full protobuf. Default: ONNX_USE_LITE_PROTO=OFF

  • ONNX_WERROR should be ON or OFF. When set to ON warnings are treated as errors. Default: ONNX_WERROR=OFF in local builds, ON in CI and release pipelines.

Common Errors

  • Note: the import onnx command does not work from the source checkout directory; in this case you'll see ModuleNotFoundError: No module named 'onnx.onnx_cpp2py_export'. Change into another directory to fix this error.

  • If you run into any issues while building Protobuf as a static library, please ensure that shared Protobuf libraries, like libprotobuf, are not installed on your device or in the conda environment. If these shared libraries exist, either remove them to build Protobuf from source as a static library, or skip the Protobuf build from source to use the shared version directly.

  • If you run into any issues while building ONNX from source, and your error message reads, Could not find pythonXX.lib, ensure that you have consistent Python versions for common commands, such as python and pip. Clean all existing build files and rebuild ONNX again.

Testing

ONNX uses pytest as test driver. In order to run tests, you will first need to install pytest:

pip install pytest nbval

After installing pytest, use the following command to run tests.

pytest

Development

Check out the contributor guide for instructions.

License

Apache License v2.0

Code of Conduct

ONNX Open Source Code of Conduct

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

amd_onnx_weekly-1.18.0.dev20240916.tar.gz (11.4 MB view details)

Uploaded Source

Built Distributions

amd_onnx_weekly-1.18.0.dev20240916-cp312-cp312-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

amd_onnx_weekly-1.18.0.dev20240916-cp312-cp312-win32.whl (14.5 MB view details)

Uploaded CPython 3.12 Windows x86

amd_onnx_weekly-1.18.0.dev20240916-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20240916-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20240916-cp312-cp312-macosx_12_0_universal2.whl (16.7 MB view details)

Uploaded CPython 3.12 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.18.0.dev20240916-cp311-cp311-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

amd_onnx_weekly-1.18.0.dev20240916-cp311-cp311-win32.whl (14.5 MB view details)

Uploaded CPython 3.11 Windows x86

amd_onnx_weekly-1.18.0.dev20240916-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20240916-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20240916-cp311-cp311-macosx_12_0_universal2.whl (16.7 MB view details)

Uploaded CPython 3.11 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.18.0.dev20240916-cp310-cp310-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

amd_onnx_weekly-1.18.0.dev20240916-cp310-cp310-win32.whl (14.5 MB view details)

Uploaded CPython 3.10 Windows x86

amd_onnx_weekly-1.18.0.dev20240916-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20240916-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20240916-cp310-cp310-macosx_12_0_universal2.whl (16.7 MB view details)

Uploaded CPython 3.10 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.18.0.dev20240916-cp39-cp39-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

amd_onnx_weekly-1.18.0.dev20240916-cp39-cp39-win32.whl (14.5 MB view details)

Uploaded CPython 3.9 Windows x86

amd_onnx_weekly-1.18.0.dev20240916-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20240916-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20240916-cp39-cp39-macosx_12_0_universal2.whl (16.7 MB view details)

Uploaded CPython 3.9 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.18.0.dev20240916-cp38-cp38-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

amd_onnx_weekly-1.18.0.dev20240916-cp38-cp38-win32.whl (14.5 MB view details)

Uploaded CPython 3.8 Windows x86

amd_onnx_weekly-1.18.0.dev20240916-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20240916-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20240916-cp38-cp38-macosx_12_0_universal2.whl (16.7 MB view details)

Uploaded CPython 3.8 macOS 12.0+ universal2 (ARM64, x86-64)

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240916.tar.gz.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240916.tar.gz
Algorithm Hash digest
SHA256 2ce6fda9d2eae370f2b1c87c82d166f66def12deb7f87212e453dc9bc1c46077
MD5 756fa3e7c0eeb768b0de9cd1f0758302
BLAKE2b-256 9c7e87d9a6f4cea22d3c5955fb57299d609accb9661b2adfca7f6b526779464f

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240916-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240916-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 8a1bb22147d98a8219e5dc3e2f2a7ecc3764ec69ee086adfa98865bf3b4acded
MD5 83d9b8e2f32bc165a438afecd54f3b59
BLAKE2b-256 bcde4fdf8bf803956beb23beb91f164d3bc51f62ea2ea740ddec7f20eb45945a

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240916-cp312-cp312-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240916-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 ea62f7cf060e303dd51fa76519410ec53431e6d1e15677b4c3c16bb274c13c01
MD5 a6810b6fc801617841dbea67fc80d0f6
BLAKE2b-256 f8dbb5066b458c00e3786f89d5006ff5746536223faf7fb401f19922b034831f

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240916-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240916-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0c4e89ed9c84121a582a4f329a8f75dddecf854f7e0d0a9ef5a2cca790ace385
MD5 641751a4c13387342ceb1aea2b7b2988
BLAKE2b-256 41dbc4919cc5548f6c9ee9a16fc3ab07b189c5ae49b7dfb119ceea6a1901b412

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240916-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240916-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 446d5904504eb91de1e9e1b2304d75305075789f5f126992e436627c747ac8a6
MD5 f1997d6651bfa57c157004908504fad5
BLAKE2b-256 191c7dde2302c54d30ef32ab30d0c6f528fc666a778b65efd529984bc939e5a2

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240916-cp312-cp312-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240916-cp312-cp312-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 b485835f61ebefb0d75c71a94edcd037fb0b6a35069fcc02e9817c619d8ccb5d
MD5 e24b8dd0a9d3bab921c6f61da71f9076
BLAKE2b-256 e4ba154b5b0cc812695cca9b42375d78a286cc589ff8214da634e616163a4260

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240916-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240916-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 90c217871feba50d1bfa2d50f1e5c86a3cbd186c56e4ef8decf2b605c9f61928
MD5 c9f8bc3f3c106183971f5a51aca4a78b
BLAKE2b-256 b9626a6429b830f8a4e896e05b53ab1feb93bf7ee9b8fba6069b687da79c2769

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240916-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240916-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 092146c19e2e3183758af63737a047b2318ade2c0d1d5a5e9df0c6a5c59aa208
MD5 8c79ae19a2dc61b4a2ede6a29661ec31
BLAKE2b-256 a7d0673863bba98abe04c3d390af06b04e1365bf5d8333b6ca9ac3e19f1739d4

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240916-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240916-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4873212c912833cf19bcf5056376238cbe5ce5fc9fecf2e3a5b26b79cfd34176
MD5 bd29500f28d60e7c3b894d7b15f57ba2
BLAKE2b-256 aea818d3136461c6f04377e3d56d663680b865dfb3f6951d668cc4bc69ab9e4a

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240916-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240916-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4a6e26b7c798b95f7a00208cdf41b7167e1cd0d231121d3f94c5c5b955c7260e
MD5 e7c8370078ec2c8739d547bf5ed0f60a
BLAKE2b-256 4c38a192039758d3d577f99510cf1d24434796c80ae7d82feb8665146fcc58a1

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240916-cp311-cp311-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240916-cp311-cp311-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 c504fa40fbef8521c852f86ba4b627088583a98c08e61efa6074dce1da10f4dc
MD5 98e5ee3d5f77e7b8548b28f9e97946b8
BLAKE2b-256 126dfc7c707e5c5314aaa15fc1c910fed525b229ec6629964a34f2bdc7d12225

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240916-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240916-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 6480bedc6adc9df2347a787feac71bf33e90c04df1fb775dd7aae78f20e40585
MD5 9e5c288f575609e8bfcd158fbb825d6a
BLAKE2b-256 15835366834c936f9d5851e8d5e5cb21b589f4e188d89abe0378b04e3f6e6998

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240916-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240916-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 e4e70897546a063ec2b0a2f122626cc86d8353c77100845b602683e1371c317b
MD5 498288bbac6317ea2acdabcea0f5d427
BLAKE2b-256 c7118ac8528acc9e183c800bc24f54eb9c008d3f489f9f3c075c21127a9f43ce

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240916-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240916-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a9c08458e56156d388c62b816993a5c575703a6c3ae609d070b54482b6ba06c5
MD5 5dce78c337a018c7ab5ec4837f4284c6
BLAKE2b-256 e3a10b1ee356b1a69be3ba2d53317f4cb50523b059b1beade2102cdc4bd489a7

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240916-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240916-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 22b9ae71450cf6471f1ecc9936414d5d0338888dc258de00501ececf798a8f82
MD5 b9607b18acb1a52c6d806513779b03a4
BLAKE2b-256 2fd3bf48caf5bb293c409e2de629188d1803208d61fe78a458e9acda0fa0230d

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240916-cp310-cp310-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240916-cp310-cp310-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 8bff2b9fb967bc4b8b5ff6802539fbb621dfabe7f07164e3f4216b08a0650513
MD5 2ff8cbba25d877e4ec0677aa25595eeb
BLAKE2b-256 8030505714a4f91cd8a4a67844f360f4cf8a1230e87ee9a91f30952897f52d05

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240916-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240916-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e7986cbc55504ce8cc958395a37f8fcbf0efd425aa26c8e71e4f745eca78ea5f
MD5 df5cbcfe2884dd1d62bc9d2ef3dc14d5
BLAKE2b-256 fa91e853fb0f9a9b544e77541453d5c9382e73a590453c265467bec85596fa4d

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240916-cp39-cp39-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240916-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 b7c93c520d97283d0792eae6c7e26ee3646c0607032696d8ba4cf45c31870259
MD5 647eeeb31d04e5ab11c919165831b963
BLAKE2b-256 97801768867700544fba18936a576553067cd2b0f2d1640b0e72e2027fb4a947

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240916-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240916-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cddaa9060f2c98002af058575bca6757fd36e9d5f1e96555b99149217bc8ceae
MD5 d01ec73bf5ac4ed1f44f1c030bd2b665
BLAKE2b-256 28505ae659907a39954e825a742bcdce7c0e50c8c0d6da6bf2a1a35a73e2f574

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240916-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240916-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 800bd4827980c3ad6989043d00b9ed833f58e2303fbc1fcccd72bb23116a645f
MD5 29af0491f988711edd701c617be09be4
BLAKE2b-256 ebf48f4741d94ceb134a7c9dbcd812e748477e1b969e45f140f8977c7215a480

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240916-cp39-cp39-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240916-cp39-cp39-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 7df5090d0a7338dcdf731a7b52ead26384cb3a3732dc38ae95cbc04d324f5ac8
MD5 253cfdc933b1d49885f5035be2b956fc
BLAKE2b-256 70ca0e40d7dad083d31e6a9c6483743ef7648e8798517ea125c39ae113bcaedf

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240916-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240916-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e8e0602fa68788b4ffcc429f3441f28bf524ef96fd68dccca077f376bc2098de
MD5 769f702bc4ec536e1395d89b9edfe198
BLAKE2b-256 17a741a8dd8cda017ed653c4dcfedbe19fc1931755e89bd2364cd9701dd17b9f

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240916-cp38-cp38-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240916-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 1644177d144794f39d1c3f05c194fbb9493b63a4a842cea423ff6d63cacfb68c
MD5 6192dfa4f57c27a7426654fe03397952
BLAKE2b-256 fb80565375b10031d646b34009e18ae2addd04f714bcc0c399f838f1a1bbae15

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240916-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240916-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b942f3a9b8210f9adf980981d0b4aeeaefa3bc733af7a234128ccd1cb8a42119
MD5 68bab6e170cf3056b9e46b80c40fba5c
BLAKE2b-256 cb7d7ab168f151a74ab7498a5c14f982565f65f42b6277101c0ff0a0331aa750

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240916-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240916-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 709bfbf12fd04db6f81e76efadfdabcbe6886216f7450b74d8e99b56b187a0f3
MD5 4fe9f3530a6be5d66a374cfb161d409c
BLAKE2b-256 c0c7919464ff7bb250b2f38aa11b94eeb005ac26288be2893a0d285252a27e93

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240916-cp38-cp38-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240916-cp38-cp38-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 3b8bd61cea8b38289f20aa28528e9e00dfea130452caeea7a9d21ea2106b0834
MD5 c6d013e3c233d8b8a9c79e1eb2418cfb
BLAKE2b-256 b7b6e76307bc0679c9fdd957fcb7090a44b6ebf871344d2656f99316a61ee139

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page