Skip to main content

Open Neural Network Exchange

Project description

PyPI - Version CI CII Best Practices OpenSSF Scorecard REUSE compliant Ruff Black

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Currently we focus on the capabilities needed for inferencing (scoring).

ONNX is widely supported and can be found in many frameworks, tools, and hardware. Enabling interoperability between different frameworks and streamlining the path from research to production helps increase the speed of innovation in the AI community. We invite the community to join us and further evolve ONNX.

Use ONNX

Learn about the ONNX spec

Programming utilities for working with ONNX Graphs

Contribute

ONNX is a community project and the open governance model is described here. We encourage you to join the effort and contribute feedback, ideas, and code. You can participate in the Special Interest Groups and Working Groups to shape the future of ONNX.

Check out our contribution guide to get started.

If you think some operator should be added to ONNX specification, please read this document.

Community meetings

The schedules of the regular meetings of the Steering Committee, the working groups and the SIGs can be found here

Community Meetups are held at least once a year. Content from previous community meetups are at:

Discuss

We encourage you to open Issues, or use Slack (If you have not joined yet, please use this link to join the group) for more real-time discussion.

Follow Us

Stay up to date with the latest ONNX news. [Facebook] [Twitter]

Roadmap

A roadmap process takes place every year. More details can be found here

Installation

Official Python packages

ONNX released packages are published in PyPi.

pip install onnx  # or pip install onnx[reference] for optional reference implementation dependencies

AMD's ONNX weekly packages are published in PyPI to enable experimentation and early testing.

vcpkg packages

onnx is in the maintenance list of vcpkg, you can easily use vcpkg to build and install it.

git clone https://github.com/microsoft/vcpkg.git
cd vcpkg
./bootstrap-vcpkg.bat # For powershell
./bootstrap-vcpkg.sh # For bash
./vcpkg install onnx

Conda packages

A binary build of ONNX is available from Conda, in conda-forge:

conda install -c conda-forge onnx

Build ONNX from Source

Before building from source uninstall any existing versions of onnx pip uninstall onnx.

c++17 or higher C++ compiler version is required to build ONNX from source. Still, users can specify their own CMAKE_CXX_STANDARD version for building ONNX.

If you don't have protobuf installed, ONNX will internally download and build protobuf for ONNX build.

Or, you can manually install protobuf C/C++ libraries and tools with specified version before proceeding forward. Then depending on how you installed protobuf, you need to set environment variable CMAKE_ARGS to "-DONNX_USE_PROTOBUF_SHARED_LIBS=ON" or "-DONNX_USE_PROTOBUF_SHARED_LIBS=OFF". For example, you may need to run the following command:

Linux:

export CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

Windows:

set CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

The ON/OFF depends on what kind of protobuf library you have. Shared libraries are files ending with *.dll/*.so/*.dylib. Static libraries are files ending with *.a/*.lib. This option depends on how you get your protobuf library and how it was built. And it is default OFF. You don't need to run the commands above if you'd prefer to use a static protobuf library.

Windows

If you are building ONNX from source, it is recommended that you also build Protobuf locally as a static library. The version distributed with conda-forge is a DLL, but ONNX expects it to be a static library. Building protobuf locally also lets you control the version of protobuf. The tested and recommended version is 3.21.12.

The instructions in this README assume you are using Visual Studio. It is recommended that you run all the commands from a shell started from "x64 Native Tools Command Prompt for VS 2019" and keep the build system generator for cmake (e.g., cmake -G "Visual Studio 16 2019") consistent while building protobuf as well as ONNX.

You can get protobuf by running the following commands:

git clone https://github.com/protocolbuffers/protobuf.git
cd protobuf
git checkout v21.12
cd cmake
cmake -G "Visual Studio 16 2019" -A x64 -DCMAKE_INSTALL_PREFIX=<protobuf_install_dir> -Dprotobuf_MSVC_STATIC_RUNTIME=OFF -Dprotobuf_BUILD_SHARED_LIBS=OFF -Dprotobuf_BUILD_TESTS=OFF -Dprotobuf_BUILD_EXAMPLES=OFF .
msbuild protobuf.sln /m /p:Configuration=Release
msbuild INSTALL.vcxproj /p:Configuration=Release

Then it will be built as a static library and installed to <protobuf_install_dir>. Please add the bin directory(which contains protoc.exe) to your PATH.

set CMAKE_PREFIX_PATH=<protobuf_install_dir>;%CMAKE_PREFIX_PATH%

Please note: if your protobuf_install_dir contains spaces, do not add quotation marks around it.

Alternative: if you don't want to change your PATH, you can set ONNX_PROTOC_EXECUTABLE instead.

set CMAKE_ARGS=-DONNX_PROTOC_EXECUTABLE=<full_path_to_protoc.exe>

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Linux

First, you need to install protobuf. The minimum Protobuf compiler (protoc) version required by ONNX is 3.6.1. Please note that old protoc versions might not work with CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON.

Ubuntu 20.04 (and newer) users may choose to install protobuf via

apt-get install python3-pip python3-dev libprotobuf-dev protobuf-compiler

In this case, it is required to add -DONNX_USE_PROTOBUF_SHARED_LIBS=ON to CMAKE_ARGS in the ONNX build step.

A more general way is to build and install it from source. See the instructions below for more details.

Installing Protobuf from source

Debian/Ubuntu:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v21.12
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

CentOS/RHEL/Fedora:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v21.12
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake  -DCMAKE_INSTALL_LIBDIR=lib64 -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

Here "-DCMAKE_POSITION_INDEPENDENT_CODE=ON" is crucial. By default static libraries are built without "-fPIC" flag, they are not position independent code. But shared libraries must be position independent code. Python C/C++ extensions(like ONNX) are shared libraries. So if a static library was not built with "-fPIC", it can't be linked to such a shared library.

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# Optional: prefer lite proto
export CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Mac

export NUM_CORES=`sysctl -n hw.ncpu`
brew update
brew install autoconf && brew install automake
wget https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protobuf-cpp-3.21.12.tar.gz
tar -xvf protobuf-cpp-3.21.12.tar.gz
cd protobuf-3.21.12
mkdir build_source && cd build_source
cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
make -j${NUM_CORES}
make install

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone --recursive https://github.com/onnx/onnx.git
cd onnx
# Optional: prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Verify Installation

After installation, run

python -c "import onnx"

to verify it works.

Common Build Options

For full list refer to CMakeLists.txt

Environment variables

  • USE_MSVC_STATIC_RUNTIME should be 1 or 0, not ON or OFF. When set to 1 onnx links statically to runtime library. Default: USE_MSVC_STATIC_RUNTIME=0

  • DEBUG should be 0 or 1. When set to 1 onnx is built in debug mode. or debug versions of the dependencies, you need to open the CMakeLists file and append a letter d at the end of the package name lines. For example, NAMES protobuf-lite would become NAMES protobuf-lited. Default: Debug=0

CMake variables

  • ONNX_USE_PROTOBUF_SHARED_LIBS should be ON or OFF. Default: ONNX_USE_PROTOBUF_SHARED_LIBS=OFF USE_MSVC_STATIC_RUNTIME=0 ONNX_USE_PROTOBUF_SHARED_LIBS determines how onnx links to protobuf libraries.

    • When set to ON - onnx will dynamically link to protobuf shared libs, PROTOBUF_USE_DLLS will be defined as described here, Protobuf_USE_STATIC_LIBS will be set to OFF and USE_MSVC_STATIC_RUNTIME must be 0.
    • When set to OFF - onnx will link statically to protobuf, and Protobuf_USE_STATIC_LIBS will be set to ON (to force the use of the static libraries) and USE_MSVC_STATIC_RUNTIME can be 0 or 1.
  • ONNX_USE_LITE_PROTO should be ON or OFF. When set to ON onnx uses lite protobuf instead of full protobuf. Default: ONNX_USE_LITE_PROTO=OFF

  • ONNX_WERROR should be ON or OFF. When set to ON warnings are treated as errors. Default: ONNX_WERROR=OFF in local builds, ON in CI and release pipelines.

Common Errors

  • Note: the import onnx command does not work from the source checkout directory; in this case you'll see ModuleNotFoundError: No module named 'onnx.onnx_cpp2py_export'. Change into another directory to fix this error.

  • If you run into any issues while building Protobuf as a static library, please ensure that shared Protobuf libraries, like libprotobuf, are not installed on your device or in the conda environment. If these shared libraries exist, either remove them to build Protobuf from source as a static library, or skip the Protobuf build from source to use the shared version directly.

  • If you run into any issues while building ONNX from source, and your error message reads, Could not find pythonXX.lib, ensure that you have consistent Python versions for common commands, such as python and pip. Clean all existing build files and rebuild ONNX again.

Testing

ONNX uses pytest as test driver. In order to run tests, you will first need to install pytest:

pip install pytest nbval

After installing pytest, use the following command to run tests.

pytest

Development

Check out the contributor guide for instructions.

License

Apache License v2.0

Code of Conduct

ONNX Open Source Code of Conduct

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

amd_onnx_weekly-1.18.0.dev20240930.tar.gz (11.4 MB view details)

Uploaded Source

Built Distributions

amd_onnx_weekly-1.18.0.dev20240930-cp312-cp312-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

amd_onnx_weekly-1.18.0.dev20240930-cp312-cp312-win32.whl (14.5 MB view details)

Uploaded CPython 3.12 Windows x86

amd_onnx_weekly-1.18.0.dev20240930-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20240930-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20240930-cp312-cp312-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.12 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.18.0.dev20240930-cp311-cp311-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

amd_onnx_weekly-1.18.0.dev20240930-cp311-cp311-win32.whl (14.5 MB view details)

Uploaded CPython 3.11 Windows x86

amd_onnx_weekly-1.18.0.dev20240930-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20240930-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20240930-cp311-cp311-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.11 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.18.0.dev20240930-cp310-cp310-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

amd_onnx_weekly-1.18.0.dev20240930-cp310-cp310-win32.whl (14.4 MB view details)

Uploaded CPython 3.10 Windows x86

amd_onnx_weekly-1.18.0.dev20240930-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20240930-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20240930-cp310-cp310-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.10 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.18.0.dev20240930-cp39-cp39-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

amd_onnx_weekly-1.18.0.dev20240930-cp39-cp39-win32.whl (14.4 MB view details)

Uploaded CPython 3.9 Windows x86

amd_onnx_weekly-1.18.0.dev20240930-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20240930-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20240930-cp39-cp39-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.9 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.18.0.dev20240930-cp38-cp38-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

amd_onnx_weekly-1.18.0.dev20240930-cp38-cp38-win32.whl (14.4 MB view details)

Uploaded CPython 3.8 Windows x86

amd_onnx_weekly-1.18.0.dev20240930-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20240930-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20240930-cp38-cp38-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.8 macOS 12.0+ universal2 (ARM64, x86-64)

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240930.tar.gz.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240930.tar.gz
Algorithm Hash digest
SHA256 d8dca070d6d311b080d26a5e33f374fedcfa85366fa67181e54c9287d1bd4f85
MD5 20328757eafdc7b91851b098149f10e9
BLAKE2b-256 7fe4325e68fb160e8402d069e3638c8f935e745844b214d4ad517cc1c9b16252

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240930-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240930-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 16843f2626fe91022c3fb4a3bfa54e59a975eedc2ef175c4a7c387559549aef7
MD5 b18e5f4501e821330e9de61c79e1a6c6
BLAKE2b-256 71ba1bc8e8c5372c3507d86c0e33f1816b1a0da6a4dfeb61c6ab5224400d5262

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240930-cp312-cp312-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240930-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 70ea9fe8ff578f1b950bb5c8679012cf682c6e2774331270a42463347500c37e
MD5 d97e67d55fe60cea12b289d6ea7a8351
BLAKE2b-256 06787f7767c6b6e4864560a787e2f4b643178a99dfe11f465015d57e4b9f00d5

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240930-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240930-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fb82bfeb7db392f39d5e49739525e4af6c0aebc1828c16902c28d33da08a5e95
MD5 cf918a1caa330e2879329f246d883eaa
BLAKE2b-256 c5b51b03fd32151730cb2c025702b47abad6e7f88d345e42ccb7303c3d956cd7

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240930-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240930-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5a5878523627e272e25b8ffda8ff89481ba5d7de92686a06820d3fc816946bfd
MD5 b659156fd641c7fd02238f525240bd71
BLAKE2b-256 8ad51a83138c0f0c6e4fec17fe8d687abe9e87292a6580fddd7d2b4bb6e998b0

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240930-cp312-cp312-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240930-cp312-cp312-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 5055aaa1fe4cc82f28a16559645cd914c759eb3e72c13c82aaa9f41bbce7c5e2
MD5 ee6c7bb5050504c1348707e19094495f
BLAKE2b-256 65e84a80bed0d8d0bd72f205cc5412c9437b9903caf1c29b4639ba51209ddb7e

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240930-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240930-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 c7e17ee1c6bf43e991fd60972b833b9a7f9d1bbe6a4e63956f5b6575d71cc64d
MD5 b571aa110df657ac6c99f70887cd40b2
BLAKE2b-256 817a3d647ce0c4120896fbc53cb1ebe91109e7dd7b051dbfa886e2a1c80b9379

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240930-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240930-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 ccc2e0e7b1287ca60f5d31432ec327f133d2d868b6d07ed342322de3f20cab7e
MD5 2e298d170f38028168966c2b442bd02d
BLAKE2b-256 5a30f847d96e145d044eaea49e27012f5c9ed9419ba24211248af24e971181ab

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240930-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240930-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3cf04e9e946fb095f85156284a39caf1a74a32db672af27676a4467afb22708b
MD5 048b6221ceb70aacb9f4d29855242679
BLAKE2b-256 dfeec8381475164b318fd08d7fa5a6b5d434c9a163c294fa0f32bb6c41892a86

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240930-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240930-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 823243326d557df0c817539dff58a976d72e080261aedebe8114be42f2acb9fe
MD5 5970427e7ebcb72b66959959876d755e
BLAKE2b-256 7ab3a2984e486b0562ac1680aeaa3cbbbf448f45e42c50ff8923b2343c5388a8

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240930-cp311-cp311-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240930-cp311-cp311-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 8a266e1dda96e7dc84ac9904518091fa57bd0abcded304e9125556a08723bb66
MD5 9ed01a22ff107b7a82ebf3a873d48760
BLAKE2b-256 248c458ef1c6f11969379f956d4025e6540d4e3340e1d798a5f2ee75fa42f5b3

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240930-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240930-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 1c1c9a78397aefceedbeab29674f9c8c4e6ec08d1592ed34a30d418b5343faa9
MD5 43328676529ed45b52e58cd5cfd4743d
BLAKE2b-256 5d8ccb3eab343940fec35ec9b41dfc01a72d2f91c6f81e49116b6509eb971deb

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240930-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240930-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 73c6999007c1c1eea395bbe115a6925588a5d983cc1655790ef0b2dc3760fcef
MD5 ea4ca553f2ff7467b76f7ea5743b08a3
BLAKE2b-256 095da1ed15437be1f73c75a923509560b81be995f832f3b686c02c8ed615860e

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240930-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240930-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2c4448f1dc929027335dc336957c9e33dd3295c32fc1c567ad8771bcba4a3ab0
MD5 c0f6c292320e72bd040d494c404e20f6
BLAKE2b-256 45bf79684b9554d81cc3f5a28935b74541446016c4157b20356f7ca5cbf75057

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240930-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240930-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6fdd02d1b3817fb1b89a0550e5bfe532d7817d53b0aeb1758c93998cc88b6ede
MD5 25ec05d485fb30da1e1ae578cdd71df1
BLAKE2b-256 c32eb53673fd69e1f556dae19af52daa161ce49026c481abbb38a1208cd6ad55

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240930-cp310-cp310-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240930-cp310-cp310-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 9259ce80369bb2c392f8ce9d1de745a71a28ece01f53bb4f18bb7e19827796e0
MD5 074f7457f53c484059885f558b39606b
BLAKE2b-256 73354caf950099bcee9f8c4cecf3db4e277b58663a7ca7e2ea8b0b41abd98164

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240930-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240930-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f5f0b816a8c2b62c489dfb7b52fcd1349fae2a8e2e88c97765c8770f03789875
MD5 6487bea7204ca2c657b5707237ca7ef8
BLAKE2b-256 ff7584f75f82132faf34c361ed81c67f66fb90ca973a48cd0d587a435644d581

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240930-cp39-cp39-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240930-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 aa5e12a8d97b0769c693d655f9775e378362f1612c608b1f772e0d8a8eab27ca
MD5 eca3757fc3aa05cc5379a43b5dce2916
BLAKE2b-256 ec6136e2a62534a20a75d8e2f734aca5790f2cd434383eb49d4122f6456aeda3

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240930-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240930-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f792d4d9476516ec8a5b7e1ae4b9829411aa236c7ab3a1215482d5f3dee63fbd
MD5 9fa1f6784651c3bd7d1169474450eef1
BLAKE2b-256 3c1071628cc766c81ccdda65a466fed1619038ced255e75d7b5609a45c6ee197

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240930-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240930-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7984646d06b480e6f00237eb3dd0644ee11d1e6157c1bca55642666e9001c237
MD5 d42c541da85fe9156ff28c02956e4ac5
BLAKE2b-256 77b24f66c308c5c66f3ccc5dc607b11f12721bbcf50aafdc2b0bbdf93847ee17

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240930-cp39-cp39-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240930-cp39-cp39-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 3726943862e9999acf1c83c80b9a4df871981e93906c6a8748942e074d52986b
MD5 8ab5cc9d2aac6b362e70c79d82e5f3d2
BLAKE2b-256 4b79eb37b19dbc11c149b3032199b1ee236e94f8ef45c227c4a2825f086812df

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240930-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240930-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 25645a15672c88194933d2de9f149f3dff77bc8062eb06b9b26a02e4edd0d1ed
MD5 97f7e820b85288b8f491d3f4cd54e83c
BLAKE2b-256 25196bc38df2ad435d7bf0c6a7d7319c9335b29543843378a9cefda328b5ec21

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240930-cp38-cp38-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240930-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 18e052ad31d06f5ef069c9978c0309fd409a9e993003fb04d8e21ce7e9cc487d
MD5 6f0b24c8f8398279b2e79875ce68be06
BLAKE2b-256 b29391589b6e1b169cededf0ee96039bb353662445c9cc9c1e091520ff8b2f9f

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240930-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240930-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f281db2b4a5b089a440d290605f1e56a9a91e16393f6212b9c39110eb2f2fe7e
MD5 1c9645f60d49b61cdde7f2e22180529c
BLAKE2b-256 b73d27d57cabde4c65edfdf8156436228501b5ebb5abe744d617e5f12dd394b2

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240930-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240930-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d54efeffd58f29adcc8324f220a9476732bd330b6757eb5054639252f7196818
MD5 f3a47988a7fec657c28234321ac567c5
BLAKE2b-256 9d9ee54b43f783e14ab59c3f143b717f3c03dab94a5abf83c6de2c1613afc80a

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20240930-cp38-cp38-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20240930-cp38-cp38-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 c416d249338393e5d77be6ec416410cf2a37471b422500c3e04f20b4c4ade469
MD5 6c08ef7f249c89d3f5ecfeaf7bedcdff
BLAKE2b-256 23430b91a63a985f204df667ed0fc7e1cc789817bf153f4cb8205c7cd821650a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page