Skip to main content

Open Neural Network Exchange

Project description

PyPI - Version CI CII Best Practices OpenSSF Scorecard REUSE compliant Ruff Black

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Currently we focus on the capabilities needed for inferencing (scoring).

ONNX is widely supported and can be found in many frameworks, tools, and hardware. Enabling interoperability between different frameworks and streamlining the path from research to production helps increase the speed of innovation in the AI community. We invite the community to join us and further evolve ONNX.

Use ONNX

Learn about the ONNX spec

Programming utilities for working with ONNX Graphs

Contribute

ONNX is a community project and the open governance model is described here. We encourage you to join the effort and contribute feedback, ideas, and code. You can participate in the Special Interest Groups and Working Groups to shape the future of ONNX.

Check out our contribution guide to get started.

If you think some operator should be added to ONNX specification, please read this document.

Community meetings

The schedules of the regular meetings of the Steering Committee, the working groups and the SIGs can be found here

Community Meetups are held at least once a year. Content from previous community meetups are at:

Discuss

We encourage you to open Issues, or use Slack (If you have not joined yet, please use this link to join the group) for more real-time discussion.

Follow Us

Stay up to date with the latest ONNX news. [Facebook] [Twitter]

Roadmap

A roadmap process takes place every year. More details can be found here

Installation

Official Python packages

ONNX released packages are published in PyPi.

pip install onnx  # or pip install onnx[reference] for optional reference implementation dependencies

AMD's ONNX weekly packages are published in PyPI to enable experimentation and early testing.

vcpkg packages

onnx is in the maintenance list of vcpkg, you can easily use vcpkg to build and install it.

git clone https://github.com/microsoft/vcpkg.git
cd vcpkg
./bootstrap-vcpkg.bat # For powershell
./bootstrap-vcpkg.sh # For bash
./vcpkg install onnx

Conda packages

A binary build of ONNX is available from Conda, in conda-forge:

conda install -c conda-forge onnx

Build ONNX from Source

Before building from source uninstall any existing versions of onnx pip uninstall onnx.

c++17 or higher C++ compiler version is required to build ONNX from source. Still, users can specify their own CMAKE_CXX_STANDARD version for building ONNX.

If you don't have protobuf installed, ONNX will internally download and build protobuf for ONNX build.

Or, you can manually install protobuf C/C++ libraries and tools with specified version before proceeding forward. Then depending on how you installed protobuf, you need to set environment variable CMAKE_ARGS to "-DONNX_USE_PROTOBUF_SHARED_LIBS=ON" or "-DONNX_USE_PROTOBUF_SHARED_LIBS=OFF". For example, you may need to run the following command:

Linux:

export CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

Windows:

set CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

The ON/OFF depends on what kind of protobuf library you have. Shared libraries are files ending with *.dll/*.so/*.dylib. Static libraries are files ending with *.a/*.lib. This option depends on how you get your protobuf library and how it was built. And it is default OFF. You don't need to run the commands above if you'd prefer to use a static protobuf library.

Windows

If you are building ONNX from source, it is recommended that you also build Protobuf locally as a static library. The version distributed with conda-forge is a DLL, but ONNX expects it to be a static library. Building protobuf locally also lets you control the version of protobuf. The tested and recommended version is 3.21.12.

The instructions in this README assume you are using Visual Studio. It is recommended that you run all the commands from a shell started from "x64 Native Tools Command Prompt for VS 2019" and keep the build system generator for cmake (e.g., cmake -G "Visual Studio 16 2019") consistent while building protobuf as well as ONNX.

You can get protobuf by running the following commands:

git clone https://github.com/protocolbuffers/protobuf.git
cd protobuf
git checkout v21.12
cd cmake
cmake -G "Visual Studio 16 2019" -A x64 -DCMAKE_INSTALL_PREFIX=<protobuf_install_dir> -Dprotobuf_MSVC_STATIC_RUNTIME=OFF -Dprotobuf_BUILD_SHARED_LIBS=OFF -Dprotobuf_BUILD_TESTS=OFF -Dprotobuf_BUILD_EXAMPLES=OFF .
msbuild protobuf.sln /m /p:Configuration=Release
msbuild INSTALL.vcxproj /p:Configuration=Release

Then it will be built as a static library and installed to <protobuf_install_dir>. Please add the bin directory(which contains protoc.exe) to your PATH.

set CMAKE_PREFIX_PATH=<protobuf_install_dir>;%CMAKE_PREFIX_PATH%

Please note: if your protobuf_install_dir contains spaces, do not add quotation marks around it.

Alternative: if you don't want to change your PATH, you can set ONNX_PROTOC_EXECUTABLE instead.

set CMAKE_ARGS=-DONNX_PROTOC_EXECUTABLE=<full_path_to_protoc.exe>

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Linux

First, you need to install protobuf. The minimum Protobuf compiler (protoc) version required by ONNX is 3.6.1. Please note that old protoc versions might not work with CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON.

Ubuntu 20.04 (and newer) users may choose to install protobuf via

apt-get install python3-pip python3-dev libprotobuf-dev protobuf-compiler

In this case, it is required to add -DONNX_USE_PROTOBUF_SHARED_LIBS=ON to CMAKE_ARGS in the ONNX build step.

A more general way is to build and install it from source. See the instructions below for more details.

Installing Protobuf from source

Debian/Ubuntu:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v21.12
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

CentOS/RHEL/Fedora:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v21.12
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake  -DCMAKE_INSTALL_LIBDIR=lib64 -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

Here "-DCMAKE_POSITION_INDEPENDENT_CODE=ON" is crucial. By default static libraries are built without "-fPIC" flag, they are not position independent code. But shared libraries must be position independent code. Python C/C++ extensions(like ONNX) are shared libraries. So if a static library was not built with "-fPIC", it can't be linked to such a shared library.

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# Optional: prefer lite proto
export CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Mac

export NUM_CORES=`sysctl -n hw.ncpu`
brew update
brew install autoconf && brew install automake
wget https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protobuf-cpp-3.21.12.tar.gz
tar -xvf protobuf-cpp-3.21.12.tar.gz
cd protobuf-3.21.12
mkdir build_source && cd build_source
cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
make -j${NUM_CORES}
make install

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone --recursive https://github.com/onnx/onnx.git
cd onnx
# Optional: prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Verify Installation

After installation, run

python -c "import onnx"

to verify it works.

Common Build Options

For full list refer to CMakeLists.txt

Environment variables

  • USE_MSVC_STATIC_RUNTIME should be 1 or 0, not ON or OFF. When set to 1 onnx links statically to runtime library. Default: USE_MSVC_STATIC_RUNTIME=0

  • DEBUG should be 0 or 1. When set to 1 onnx is built in debug mode. or debug versions of the dependencies, you need to open the CMakeLists file and append a letter d at the end of the package name lines. For example, NAMES protobuf-lite would become NAMES protobuf-lited. Default: Debug=0

CMake variables

  • ONNX_USE_PROTOBUF_SHARED_LIBS should be ON or OFF. Default: ONNX_USE_PROTOBUF_SHARED_LIBS=OFF USE_MSVC_STATIC_RUNTIME=0 ONNX_USE_PROTOBUF_SHARED_LIBS determines how onnx links to protobuf libraries.

    • When set to ON - onnx will dynamically link to protobuf shared libs, PROTOBUF_USE_DLLS will be defined as described here, Protobuf_USE_STATIC_LIBS will be set to OFF and USE_MSVC_STATIC_RUNTIME must be 0.
    • When set to OFF - onnx will link statically to protobuf, and Protobuf_USE_STATIC_LIBS will be set to ON (to force the use of the static libraries) and USE_MSVC_STATIC_RUNTIME can be 0 or 1.
  • ONNX_USE_LITE_PROTO should be ON or OFF. When set to ON onnx uses lite protobuf instead of full protobuf. Default: ONNX_USE_LITE_PROTO=OFF

  • ONNX_WERROR should be ON or OFF. When set to ON warnings are treated as errors. Default: ONNX_WERROR=OFF in local builds, ON in CI and release pipelines.

Common Errors

  • Note: the import onnx command does not work from the source checkout directory; in this case you'll see ModuleNotFoundError: No module named 'onnx.onnx_cpp2py_export'. Change into another directory to fix this error.

  • If you run into any issues while building Protobuf as a static library, please ensure that shared Protobuf libraries, like libprotobuf, are not installed on your device or in the conda environment. If these shared libraries exist, either remove them to build Protobuf from source as a static library, or skip the Protobuf build from source to use the shared version directly.

  • If you run into any issues while building ONNX from source, and your error message reads, Could not find pythonXX.lib, ensure that you have consistent Python versions for common commands, such as python and pip. Clean all existing build files and rebuild ONNX again.

Testing

ONNX uses pytest as test driver. In order to run tests, you will first need to install pytest:

pip install pytest nbval

After installing pytest, use the following command to run tests.

pytest

Development

Check out the contributor guide for instructions.

License

Apache License v2.0

Code of Conduct

ONNX Open Source Code of Conduct

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

amd_onnx_weekly-1.18.0.dev20241007.tar.gz (11.4 MB view details)

Uploaded Source

Built Distributions

amd_onnx_weekly-1.18.0.dev20241007-cp312-cp312-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

amd_onnx_weekly-1.18.0.dev20241007-cp312-cp312-win32.whl (14.5 MB view details)

Uploaded CPython 3.12 Windows x86

amd_onnx_weekly-1.18.0.dev20241007-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20241007-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20241007-cp312-cp312-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.12 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.18.0.dev20241007-cp311-cp311-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

amd_onnx_weekly-1.18.0.dev20241007-cp311-cp311-win32.whl (14.5 MB view details)

Uploaded CPython 3.11 Windows x86

amd_onnx_weekly-1.18.0.dev20241007-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20241007-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20241007-cp311-cp311-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.11 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.18.0.dev20241007-cp310-cp310-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

amd_onnx_weekly-1.18.0.dev20241007-cp310-cp310-win32.whl (14.5 MB view details)

Uploaded CPython 3.10 Windows x86

amd_onnx_weekly-1.18.0.dev20241007-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20241007-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20241007-cp310-cp310-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.10 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.18.0.dev20241007-cp39-cp39-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

amd_onnx_weekly-1.18.0.dev20241007-cp39-cp39-win32.whl (14.5 MB view details)

Uploaded CPython 3.9 Windows x86

amd_onnx_weekly-1.18.0.dev20241007-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20241007-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20241007-cp39-cp39-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.9 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.18.0.dev20241007-cp38-cp38-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

amd_onnx_weekly-1.18.0.dev20241007-cp38-cp38-win32.whl (14.5 MB view details)

Uploaded CPython 3.8 Windows x86

amd_onnx_weekly-1.18.0.dev20241007-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20241007-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20241007-cp38-cp38-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.8 macOS 12.0+ universal2 (ARM64, x86-64)

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241007.tar.gz.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241007.tar.gz
Algorithm Hash digest
SHA256 6df198a1035d35952d956d7a615d2882a12a2e75d315a6dd0282f198ef6091c7
MD5 f45ff69415ce722c1c39dc8875ede8f5
BLAKE2b-256 b25320749de861f7ccda1281a80cc25f2b335b30d42776122c12f7c153212175

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241007-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241007-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 4c97762c30d31e94395ef62bd94cf4d2a2e03c7648649d67bb7fdb8363498d5e
MD5 101edc92570806f9d8508ff1dad0d6ed
BLAKE2b-256 80a49c042d41636df21f0adbadea09da8bebd42e9b8c77d7a8d627ae5d336776

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241007-cp312-cp312-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241007-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 0bd3370ea4727bc4967c5eceef4656ec99a8328225fe8baa0bcc9bc60f75ba6e
MD5 19be337931d72b429ad520973f8b905a
BLAKE2b-256 e162070675312d69ecc8f08c5b9450637d68633083b19f30e79124d6f63328e8

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241007-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241007-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4b2c8fb98c9e003a3d15164368f6cb8380edb585fc112881b39d3fb9526502ac
MD5 71d5c59177f4ae276a38fc008293065f
BLAKE2b-256 b611c3ca662bc588b8a12a4d176ee150bf574a113f36e07b045a568d0dde9bba

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241007-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241007-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8174593018686856e52e4193fdda513db06bc12ef22ad86ffdfa6ace386d2d21
MD5 6230dbf51136036e282d1cd0c9b41017
BLAKE2b-256 995c6f15b56a09483fd8f2a776ba069575b1e2f8bc8f3f22530fcd11ccaa7eb3

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241007-cp312-cp312-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241007-cp312-cp312-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 13762311e97aa9620453fe26e50437271687511641879aa0639d2314563a04c0
MD5 46ceea9ecdab9f6cfd576bae8bd17585
BLAKE2b-256 71bb4e42b6062d170657f423ddc101e704e146b46eebeb1511361c9cc87d359f

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241007-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241007-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 72d8e7dd2d43a57c8430a0a537ab092e751b1d1df947a9be83e10c78ccf8d168
MD5 f74c67f6abf421b746474a218affec87
BLAKE2b-256 99fc5d18db2009763bf406eaffb1030d154afc29693fb5227fdadd15187905e5

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241007-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241007-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 f3d995f49f21bb6a7e3ba818a4a70232d6f5744a6e1d5fe68b432424f85025ce
MD5 6d55c4bb562b736144840abf4fc6907b
BLAKE2b-256 dc082a3196a2d7487527225ca56d8b259f90fbb06fc04905834d278bc4300cac

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241007-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241007-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 de44cb9084e4471e54232d8a93171d4a3bcf2b07d5d8210b25aa2c5c8bbc63b7
MD5 9672b2b05a3512388e1d8a9d7b4e7b89
BLAKE2b-256 3e2d6b623c227151147550fc7ea2296ccbdcbf637dbe6cbeda1a16fc08f83139

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241007-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241007-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8a2e1274f17867f26f38154865f41081480a57973bd7b5a748ad4577b9a45a48
MD5 e75abf0d14cc399f7cf0b9b1e48f976c
BLAKE2b-256 38901e8a160bd8b87f321a88b7d50b8bc25e34dae49f051246ac317522aff75a

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241007-cp311-cp311-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241007-cp311-cp311-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 3fa1f9f2a2162daa5c87ccad9a24d33c610ad430bfddaf73bb2e7c47565b43f2
MD5 8e6556bb8c985e1f109c8fb92e6674b5
BLAKE2b-256 31aa1828c9f9af1c6413b872765aaa6545ec4d23d3b467f0e2bd9f5157849d6a

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241007-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241007-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 8f34e6fedc40256f2e94cd62e1d2a09cf5d5ac5e407ff7a9a7b660a42f8d9b6b
MD5 95ba313eb5ba1a522ad8517a7549139c
BLAKE2b-256 3ba882efb995c8db994e0a3c0db2f7029674288009b4f76a4930ac63007e49b5

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241007-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241007-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 c5b1dca245c757dc1709c4c49719db378469fdeea31e6a9e37fd6d599bccfcfa
MD5 d77a2ec0004a0e723e20ecd03d697396
BLAKE2b-256 b47defe191e644a60a9350a3d6f6ac15bfe4784193d240479ad2ccd88b877bd3

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241007-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241007-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 987c1ff90f5802d395191f1b616362993fc3327084dae20abf320d4c7d98855a
MD5 84da3e3d9dcb233b81d5355c7bb0e59b
BLAKE2b-256 64d347344ffd16a650516d3477097ec1eb7bbc5d25d62e276cc1c8a769bd1997

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241007-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241007-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 93b6f47bb7f25e6ffca8d890beaeca1bbf80c2081ce44f6febaf5dab3c27fb14
MD5 d2b8589828dfe05ac7297fff38d2c64a
BLAKE2b-256 ab272cf02748882ad09898955e83d86f91237c99f75c40585f3ccacdebb05e7d

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241007-cp310-cp310-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241007-cp310-cp310-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 49702ea5e60edb9404302ce94d78eebf1d9edc548d4412f2774bba17c8b22918
MD5 0627f11818406c1f0de310031866d002
BLAKE2b-256 8c0d92f0a1e3f2b2892c62b281fbe94caaa394a5ed221d6dc5bce4aabb217ff7

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241007-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241007-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0088c9a5a5cc7ba899fc6f8d25368767a4eff5b59861f83c83f75f612d896956
MD5 bc43d04835d64e35cbed6526c061b6ed
BLAKE2b-256 e6b19d6cd306e971b3a786f53920112da894dfe16bd183f9e130d38ed5ea4a8f

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241007-cp39-cp39-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241007-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 e1d3c0462748bcd71301287b9c433df3243e6b91c0ee942bb8311cfa63260d74
MD5 26711b818ae6f5825af363ea1d0823fe
BLAKE2b-256 ad59f4e0c00b3816f1f98036157d9e569ffe456cb6d48e6daa2cf0d6d6049be8

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241007-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241007-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 344cad030d564984ea366fbd54e983dbdb53dcf2418cc37cf42ff0c64e83b463
MD5 bb7811ea36c5720d1356e94181e6c88c
BLAKE2b-256 077a4805526a9011ce259cbd0a39e4ac6f24d21402c597cb83c85377a896a0c3

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241007-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241007-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 27d2d7aed1f23c273090f1e97b77f1408fbe0ab658ce1377609e35d76fd22836
MD5 601c1b02d0f14477768b00211a72433c
BLAKE2b-256 016955349d15de43cd50f13a66a1622897be2f2cff0d6aef4541b506cdc64185

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241007-cp39-cp39-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241007-cp39-cp39-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 faa2804fea83bada53eeba0cade640018f82ac79bb27c23829d4c409500f5d20
MD5 80384e31a3f969102e148a3744db5198
BLAKE2b-256 37d1dfcb01ccc25fc3933bd5fc10b78df4c010a0b316a8de74c4d4b036a0b297

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241007-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241007-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 28acab407069def9b6e9432ed8d4bde84a70182abc25ff7bdc26121a7c1302b0
MD5 33d124ae82f3f274a80ff870340ac0c8
BLAKE2b-256 938635efe8170c21485b8e9af73f680fc2cd47f1fab55a69d8e397b6da3d5c75

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241007-cp38-cp38-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241007-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 147783456a7995de84cd22b79e7f7b937a71b743e2e3e1614d7c4ffbcaa8b412
MD5 8b22b92f2285ec6c154040987a41e04a
BLAKE2b-256 23268c96eadbe9e31161b9ea400d218e8b46a3034658721ef88cf1c3efaf0caa

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241007-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241007-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e907dc17921397c9df6e924a5c089309166e7bcb3c4a008c25cf77a71ff2ca32
MD5 47b4a67a7bfccf7529cb1586cb981cda
BLAKE2b-256 a5bd7d1d9727907d048be9f43921794655b75fa35064e4ca56b30a7326ac5c7d

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241007-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241007-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8ca6c5d612ae259b4810dabe49726519b23e8c2bd5b2da6dbe227126bab464f7
MD5 643a869f03a0ffe9bdc6076b30b60d9c
BLAKE2b-256 2d684c80b5593cd75ca78654fb1e965289c5156c513af42b8beb508f7f22eae9

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241007-cp38-cp38-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241007-cp38-cp38-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 5b89730605da19cdede884f55ebd405ff31637c505169e41b8c2218b45e0702f
MD5 755c3ceeac75cb5f3492674bd34387d2
BLAKE2b-256 03007f4c5ebed627f8cf8c425b6221c4602395ffdf2e510a883ca219fc8b7a8e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page