Skip to main content

Open Neural Network Exchange

Project description

PyPI - Version CI CII Best Practices OpenSSF Scorecard REUSE compliant Ruff Black

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Currently we focus on the capabilities needed for inferencing (scoring).

ONNX is widely supported and can be found in many frameworks, tools, and hardware. Enabling interoperability between different frameworks and streamlining the path from research to production helps increase the speed of innovation in the AI community. We invite the community to join us and further evolve ONNX.

Use ONNX

Learn about the ONNX spec

Programming utilities for working with ONNX Graphs

Contribute

ONNX is a community project and the open governance model is described here. We encourage you to join the effort and contribute feedback, ideas, and code. You can participate in the Special Interest Groups and Working Groups to shape the future of ONNX.

Check out our contribution guide to get started.

If you think some operator should be added to ONNX specification, please read this document.

Community meetings

The schedules of the regular meetings of the Steering Committee, the working groups and the SIGs can be found here

Community Meetups are held at least once a year. Content from previous community meetups are at:

Discuss

We encourage you to open Issues, or use Slack (If you have not joined yet, please use this link to join the group) for more real-time discussion.

Follow Us

Stay up to date with the latest ONNX news. [Facebook] [Twitter]

Roadmap

A roadmap process takes place every year. More details can be found here

Installation

Official Python packages

ONNX released packages are published in PyPi.

pip install onnx  # or pip install onnx[reference] for optional reference implementation dependencies

AMD's ONNX weekly packages are published in PyPI to enable experimentation and early testing.

vcpkg packages

onnx is in the maintenance list of vcpkg, you can easily use vcpkg to build and install it.

git clone https://github.com/microsoft/vcpkg.git
cd vcpkg
./bootstrap-vcpkg.bat # For powershell
./bootstrap-vcpkg.sh # For bash
./vcpkg install onnx

Conda packages

A binary build of ONNX is available from Conda, in conda-forge:

conda install -c conda-forge onnx

Build ONNX from Source

Before building from source uninstall any existing versions of onnx pip uninstall onnx.

c++17 or higher C++ compiler version is required to build ONNX from source. Still, users can specify their own CMAKE_CXX_STANDARD version for building ONNX.

If you don't have protobuf installed, ONNX will internally download and build protobuf for ONNX build.

Or, you can manually install protobuf C/C++ libraries and tools with specified version before proceeding forward. Then depending on how you installed protobuf, you need to set environment variable CMAKE_ARGS to "-DONNX_USE_PROTOBUF_SHARED_LIBS=ON" or "-DONNX_USE_PROTOBUF_SHARED_LIBS=OFF". For example, you may need to run the following command:

Linux:

export CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

Windows:

set CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

The ON/OFF depends on what kind of protobuf library you have. Shared libraries are files ending with *.dll/*.so/*.dylib. Static libraries are files ending with *.a/*.lib. This option depends on how you get your protobuf library and how it was built. And it is default OFF. You don't need to run the commands above if you'd prefer to use a static protobuf library.

Windows

If you are building ONNX from source, it is recommended that you also build Protobuf locally as a static library. The version distributed with conda-forge is a DLL, but ONNX expects it to be a static library. Building protobuf locally also lets you control the version of protobuf. The tested and recommended version is 3.21.12.

The instructions in this README assume you are using Visual Studio. It is recommended that you run all the commands from a shell started from "x64 Native Tools Command Prompt for VS 2019" and keep the build system generator for cmake (e.g., cmake -G "Visual Studio 16 2019") consistent while building protobuf as well as ONNX.

You can get protobuf by running the following commands:

git clone https://github.com/protocolbuffers/protobuf.git
cd protobuf
git checkout v21.12
cd cmake
cmake -G "Visual Studio 16 2019" -A x64 -DCMAKE_INSTALL_PREFIX=<protobuf_install_dir> -Dprotobuf_MSVC_STATIC_RUNTIME=OFF -Dprotobuf_BUILD_SHARED_LIBS=OFF -Dprotobuf_BUILD_TESTS=OFF -Dprotobuf_BUILD_EXAMPLES=OFF .
msbuild protobuf.sln /m /p:Configuration=Release
msbuild INSTALL.vcxproj /p:Configuration=Release

Then it will be built as a static library and installed to <protobuf_install_dir>. Please add the bin directory(which contains protoc.exe) to your PATH.

set CMAKE_PREFIX_PATH=<protobuf_install_dir>;%CMAKE_PREFIX_PATH%

Please note: if your protobuf_install_dir contains spaces, do not add quotation marks around it.

Alternative: if you don't want to change your PATH, you can set ONNX_PROTOC_EXECUTABLE instead.

set CMAKE_ARGS=-DONNX_PROTOC_EXECUTABLE=<full_path_to_protoc.exe>

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Linux

First, you need to install protobuf. The minimum Protobuf compiler (protoc) version required by ONNX is 3.6.1. Please note that old protoc versions might not work with CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON.

Ubuntu 20.04 (and newer) users may choose to install protobuf via

apt-get install python3-pip python3-dev libprotobuf-dev protobuf-compiler

In this case, it is required to add -DONNX_USE_PROTOBUF_SHARED_LIBS=ON to CMAKE_ARGS in the ONNX build step.

A more general way is to build and install it from source. See the instructions below for more details.

Installing Protobuf from source

Debian/Ubuntu:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v21.12
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

CentOS/RHEL/Fedora:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v21.12
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake  -DCMAKE_INSTALL_LIBDIR=lib64 -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

Here "-DCMAKE_POSITION_INDEPENDENT_CODE=ON" is crucial. By default static libraries are built without "-fPIC" flag, they are not position independent code. But shared libraries must be position independent code. Python C/C++ extensions(like ONNX) are shared libraries. So if a static library was not built with "-fPIC", it can't be linked to such a shared library.

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# Optional: prefer lite proto
export CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Mac

export NUM_CORES=`sysctl -n hw.ncpu`
brew update
brew install autoconf && brew install automake
wget https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protobuf-cpp-3.21.12.tar.gz
tar -xvf protobuf-cpp-3.21.12.tar.gz
cd protobuf-3.21.12
mkdir build_source && cd build_source
cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
make -j${NUM_CORES}
make install

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone --recursive https://github.com/onnx/onnx.git
cd onnx
# Optional: prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Verify Installation

After installation, run

python -c "import onnx"

to verify it works.

Common Build Options

For full list refer to CMakeLists.txt

Environment variables

  • USE_MSVC_STATIC_RUNTIME should be 1 or 0, not ON or OFF. When set to 1 onnx links statically to runtime library. Default: USE_MSVC_STATIC_RUNTIME=0

  • DEBUG should be 0 or 1. When set to 1 onnx is built in debug mode. or debug versions of the dependencies, you need to open the CMakeLists file and append a letter d at the end of the package name lines. For example, NAMES protobuf-lite would become NAMES protobuf-lited. Default: Debug=0

CMake variables

  • ONNX_USE_PROTOBUF_SHARED_LIBS should be ON or OFF. Default: ONNX_USE_PROTOBUF_SHARED_LIBS=OFF USE_MSVC_STATIC_RUNTIME=0 ONNX_USE_PROTOBUF_SHARED_LIBS determines how onnx links to protobuf libraries.

    • When set to ON - onnx will dynamically link to protobuf shared libs, PROTOBUF_USE_DLLS will be defined as described here, Protobuf_USE_STATIC_LIBS will be set to OFF and USE_MSVC_STATIC_RUNTIME must be 0.
    • When set to OFF - onnx will link statically to protobuf, and Protobuf_USE_STATIC_LIBS will be set to ON (to force the use of the static libraries) and USE_MSVC_STATIC_RUNTIME can be 0 or 1.
  • ONNX_USE_LITE_PROTO should be ON or OFF. When set to ON onnx uses lite protobuf instead of full protobuf. Default: ONNX_USE_LITE_PROTO=OFF

  • ONNX_WERROR should be ON or OFF. When set to ON warnings are treated as errors. Default: ONNX_WERROR=OFF in local builds, ON in CI and release pipelines.

Common Errors

  • Note: the import onnx command does not work from the source checkout directory; in this case you'll see ModuleNotFoundError: No module named 'onnx.onnx_cpp2py_export'. Change into another directory to fix this error.

  • If you run into any issues while building Protobuf as a static library, please ensure that shared Protobuf libraries, like libprotobuf, are not installed on your device or in the conda environment. If these shared libraries exist, either remove them to build Protobuf from source as a static library, or skip the Protobuf build from source to use the shared version directly.

  • If you run into any issues while building ONNX from source, and your error message reads, Could not find pythonXX.lib, ensure that you have consistent Python versions for common commands, such as python and pip. Clean all existing build files and rebuild ONNX again.

Testing

ONNX uses pytest as test driver. In order to run tests, you will first need to install pytest:

pip install pytest nbval

After installing pytest, use the following command to run tests.

pytest

Development

Check out the contributor guide for instructions.

License

Apache License v2.0

Code of Conduct

ONNX Open Source Code of Conduct

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

amd_onnx_weekly-1.18.0.dev20241014.tar.gz (11.4 MB view details)

Uploaded Source

Built Distributions

amd_onnx_weekly-1.18.0.dev20241014-cp312-cp312-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

amd_onnx_weekly-1.18.0.dev20241014-cp312-cp312-win32.whl (14.4 MB view details)

Uploaded CPython 3.12 Windows x86

amd_onnx_weekly-1.18.0.dev20241014-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20241014-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20241014-cp312-cp312-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.12 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.18.0.dev20241014-cp311-cp311-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

amd_onnx_weekly-1.18.0.dev20241014-cp311-cp311-win32.whl (14.4 MB view details)

Uploaded CPython 3.11 Windows x86

amd_onnx_weekly-1.18.0.dev20241014-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20241014-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20241014-cp311-cp311-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.11 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.18.0.dev20241014-cp310-cp310-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

amd_onnx_weekly-1.18.0.dev20241014-cp310-cp310-win32.whl (14.4 MB view details)

Uploaded CPython 3.10 Windows x86

amd_onnx_weekly-1.18.0.dev20241014-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20241014-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20241014-cp310-cp310-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.10 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.18.0.dev20241014-cp39-cp39-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

amd_onnx_weekly-1.18.0.dev20241014-cp39-cp39-win32.whl (14.4 MB view details)

Uploaded CPython 3.9 Windows x86

amd_onnx_weekly-1.18.0.dev20241014-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20241014-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20241014-cp39-cp39-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.9 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.18.0.dev20241014-cp38-cp38-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

amd_onnx_weekly-1.18.0.dev20241014-cp38-cp38-win32.whl (14.4 MB view details)

Uploaded CPython 3.8 Windows x86

amd_onnx_weekly-1.18.0.dev20241014-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20241014-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20241014-cp38-cp38-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.8 macOS 12.0+ universal2 (ARM64, x86-64)

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241014.tar.gz.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241014.tar.gz
Algorithm Hash digest
SHA256 f4f5fc20fcb5cd6c483fa76d98b53c962caff183e26524b58bf8825c32278289
MD5 7dff279f5e8dddf70bc916d574439cac
BLAKE2b-256 778a39995d95f6951cf325d2e6c83ed40a18b5fc6ba3b2163b5be429804eb854

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241014-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241014-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 ee0f2a367d97467263e2394da53c3f4a2b507d1e6d81851fba0aa91e7dc3290d
MD5 85378990cdf5a20faf91896ef33cc823
BLAKE2b-256 a58b9dc52727c50e16e2cdd1652cc26dd8e769409c47268f8b0a3b9aab3b11e1

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241014-cp312-cp312-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241014-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 b21f7ce7c4e77673dbd585dc184be881660fa03809e903cedebc82d9a3b0d99b
MD5 afe1cf064d6bb36dec6bc286a0af07e1
BLAKE2b-256 417d7c05698158f0ecc8ca95f04f24468aefeb1699329f968881fba19bb13ebf

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241014-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241014-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 83b26f4ff868f11231c422b72c25f0f86ad45aff08e5a20ee134f8ee90b8467e
MD5 0ed6908050711b5a14613a72a06c0071
BLAKE2b-256 25d2c9e784404c05bddaa5351b4263ea7dc6a66239c4e38b6d392f26e4a52c80

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241014-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241014-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a4923eb7246db6f042d188d49b6b7aa78593359a58e196107abcb5f64139ce55
MD5 86cd335d1158a7880f1503e596347212
BLAKE2b-256 39af6ca9ae019607334582eef306799de8a03c334204e5e63f25ac9cb615c5c0

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241014-cp312-cp312-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241014-cp312-cp312-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 138caef9f8adf806ed336c0b5727e924e11ae245efa8582b469ad0d91a792edb
MD5 07e1b75093b2f4ccf1f2a6b5b768d938
BLAKE2b-256 1464ab47c45e192677460c5fcfe1861d15d467df918c8e903f5b8ba3fa4f08dd

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241014-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241014-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 6ab7b1f01d3dea7619b558adf8e0e98fb38b63854749a08f1e6ecb7d66944abe
MD5 dd6375a6ac8e95fbb4e632dadec2a49c
BLAKE2b-256 182d59ccedbabcdf8316dfcb7f2ff64054bfdec92d3de92d8280704c20994c4c

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241014-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241014-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 e84fad06d74072c0ff69fd44db98d4b0d1d374150820f50f0144f7214fd2393d
MD5 cac3770892e3ccf01237e9513c645a9b
BLAKE2b-256 984375edf166911f5794fcb5713d67f1ed1ffa50152f09bb474be94c4b0b44d1

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241014-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241014-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a04525289fc0fa60e8c990f8da71345feb5e98e62b71a1a6e5a48ee6c0f289c0
MD5 b683f0659d67e92bb5b9b57c0732264f
BLAKE2b-256 d9b1dddb1b13f48a64c2f9df3e5e04af5b858b12435a3a7a72a37ef2ccdfe7ba

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241014-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241014-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 eabdf61654f33bde88b2d4f2b830099f64edf0aababfec582e30a39bbb0832ea
MD5 a156c01a714412bd9fb155bbc0059ec2
BLAKE2b-256 3ca2ed0a53973dc35ae716df1fce72cfa947c560284817a0f5064e7f820e19b1

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241014-cp311-cp311-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241014-cp311-cp311-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 ab75b3c5eabd043c19bf0acf27eb1a90d15e526816e51df051dc674cb6b662b6
MD5 747f098e421ebec2f225d2f55117d9eb
BLAKE2b-256 9a31106dadf42d958cf2bcec733dff3b5a3a21d55941eeea784cc2da52f83f1f

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241014-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241014-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 820e345e6b21baaf2733b4e1053ce32e17510b337eaefc7520a0ec87e3de6bc6
MD5 4f7943460c8a8aacc85e0db56e38c12e
BLAKE2b-256 e4c1faae5d36d8d176fa2d28a658e805f0cfa359e37aaf40539383d162f735b5

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241014-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241014-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 ddff06209becfdce8e15922ec3570126b195a14ad2e7d63febd6dcda89487006
MD5 641d6cbf27758fef0725232554f9c4fc
BLAKE2b-256 2b7586f554c6fa7dbc5f5c0708ac6dcc28e6d94ef07e4162e41437200b5ec480

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241014-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241014-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 36991aa25ad1b15c37fbbfd58b08fcc6b60c04d659fe8c4f40ff3985047f1117
MD5 4826bdba1790e64102bd4c1a83f47a71
BLAKE2b-256 3693d50035a51f80e042ffa52f325b608f4120d1588de9dca8c36e1ee45fa8af

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241014-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241014-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3492f7ef70093e83b9690ad083fb0cadf5d2e87d18ae4302022955d63e31fb7c
MD5 d75d2f29764fb51b9579dbf4e5519c18
BLAKE2b-256 a254a32c69f2f8392447cba29e98e4d56a161880e851c64ae63976487316b562

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241014-cp310-cp310-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241014-cp310-cp310-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 2d02a1ca6e81b03dd5ce001c2f2f4a5ad77d174ece9ed4e825c7bda96ec73758
MD5 e87e47da7dc41be4ca3a784b9b49a5c4
BLAKE2b-256 d59ae85cff0bc07bb7898fc453d23b86735c5f63156bbbb254fbf6253a53a282

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241014-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241014-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e8073eb53d349113dcc0b766b4f706c1373b9565bcffb3eb2b1d474f72769e9a
MD5 97f7bd907fd3e23d4682103bbe02f2fa
BLAKE2b-256 b70c3bfe2d32b6aa669a11807b8f9b6414a29c04f5a6608b0cea39230e7d41dc

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241014-cp39-cp39-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241014-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 0b8c54d75571d121e04b050ddafe427b613971e6e21c3e69a2c152bfb770a0f8
MD5 7878495f7646b8c3978d701c9ee1edba
BLAKE2b-256 f1b72d55de0c17377b2f76003214a14bae1c811344d9d94dabe9103c92dfee9d

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241014-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241014-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 09cd8689c99ef3690b3b099bee31ea514603a428e33a116ad933a7674834c4b7
MD5 bf7d82db39f2f31af0df1a92a08f0808
BLAKE2b-256 37de6f7b036a94c6ae9eb189682a34ab39bf4a1cfd098bb9aa39dd97b4d5576b

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241014-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241014-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f494700ee9e9a3e58829c385f8c11ee05e3c208824f363f329769607a2f12950
MD5 6e38cf2de0c0b9e2568f061e8d16ef06
BLAKE2b-256 a28f1bf1ff60d76f51be35e0285252237629428923d53017392aed7ef0e3831f

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241014-cp39-cp39-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241014-cp39-cp39-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 3c980d3866ce27485ca31b9993203be4a14bb390dedea760ee707e7881044660
MD5 ee04df5ae393e88987fb79676d29c7a0
BLAKE2b-256 4da99f70df5135e59c4b54928761125f5262619a206e248122ed015af9549e5f

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241014-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241014-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b5946fa6a0894e29a004f6251a048962dc00d8ae2b3381d90264ef34109dadc9
MD5 fb6c5d49856870c2cbcfb670840ed18a
BLAKE2b-256 35ef2fd5b641ee69c6fca08bdaa745b346cc4fd4180e6d43776f845ad8fd697e

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241014-cp38-cp38-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241014-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 440ee7b7f7551be21d9d2a44b5e584ec7fa2748a7fde7a25684742e20f61cd1d
MD5 d3124387085d15cc1d3006696eb1c77f
BLAKE2b-256 faadac731e0d298cb4b264f4568093be3219bf796a80733fd9f836f59f4865dd

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241014-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241014-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 699a1a064253fcade4339e4aeff61a9db8a37c35f5fac5ced3a5c9c0f4988a0b
MD5 90d725471eafc4add91cd1ef7e66020c
BLAKE2b-256 bf63e2074b7ff5fc372c0d1d49a40d1dcb98606b8e0eb2da029b7466ab05b659

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241014-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241014-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 92459abdf0ecd3f608b84381e59eb0352db39d07674003355e4d0f5c7c984d02
MD5 612a45bf2d983bb9119d319254e8eae6
BLAKE2b-256 f07e976e21de7a77ae3b2cb0b91cb7e78c035acb7a5007bae03c13d3d5db54bf

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241014-cp38-cp38-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241014-cp38-cp38-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 07264aa8f7502dae95512fdddb7b1b1e17b402a8c91630273ad05c651a28d6d6
MD5 0725139dd1e26cee05506580a55ac1b5
BLAKE2b-256 ffd9f9490270aed88f914c930e06bbfba05c0f14f66299a6b8f5c520f67ba80c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page