Skip to main content

Open Neural Network Exchange

Project description

PyPI - Version CI CII Best Practices OpenSSF Scorecard REUSE compliant Ruff Black

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Currently we focus on the capabilities needed for inferencing (scoring).

ONNX is widely supported and can be found in many frameworks, tools, and hardware. Enabling interoperability between different frameworks and streamlining the path from research to production helps increase the speed of innovation in the AI community. We invite the community to join us and further evolve ONNX.

Use ONNX

Learn about the ONNX spec

Programming utilities for working with ONNX Graphs

Contribute

ONNX is a community project and the open governance model is described here. We encourage you to join the effort and contribute feedback, ideas, and code. You can participate in the Special Interest Groups and Working Groups to shape the future of ONNX.

Check out our contribution guide to get started.

If you think some operator should be added to ONNX specification, please read this document.

Community meetings

The schedules of the regular meetings of the Steering Committee, the working groups and the SIGs can be found here

Community Meetups are held at least once a year. Content from previous community meetups are at:

Discuss

We encourage you to open Issues, or use Slack (If you have not joined yet, please use this link to join the group) for more real-time discussion.

Follow Us

Stay up to date with the latest ONNX news. [Facebook] [Twitter]

Roadmap

A roadmap process takes place every year. More details can be found here

Installation

Official Python packages

ONNX released packages are published in PyPi.

pip install onnx  # or pip install onnx[reference] for optional reference implementation dependencies

AMD's ONNX weekly packages are published in PyPI to enable experimentation and early testing.

vcpkg packages

ONNX is in the maintenance list of vcpkg, you can easily use vcpkg to build and install it.

git clone https://github.com/microsoft/vcpkg.git
cd vcpkg
./bootstrap-vcpkg.bat # For powershell
./bootstrap-vcpkg.sh # For bash
./vcpkg install onnx

Conda packages

A binary build of ONNX is available from Conda, in conda-forge:

conda install -c conda-forge onnx

Build ONNX from Source

Before building from source uninstall any existing versions of ONNX pip uninstall onnx.

C++17 or higher C++ compiler version is required to build ONNX from source. Still, users can specify their own CMAKE_CXX_STANDARD version for building ONNX.

If you don't have protobuf installed, ONNX will internally download and build protobuf for ONNX build.

Or, you can manually install protobuf C/C++ libraries and tools with specified version before proceeding forward. Then depending on how you installed protobuf, you need to set environment variable CMAKE_ARGS to "-DONNX_USE_PROTOBUF_SHARED_LIBS=ON" or "-DONNX_USE_PROTOBUF_SHARED_LIBS=OFF". For example, you may need to run the following command:

Linux:

export CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

Windows:

set CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

The ON/OFF depends on what kind of protobuf library you have. Shared libraries are files ending with *.dll/*.so/*.dylib. Static libraries are files ending with *.a/*.lib. This option depends on how you get your protobuf library and how it was built. And it is default OFF. You don't need to run the commands above if you'd prefer to use a static protobuf library.

Windows

If you are building ONNX from source, it is recommended that you also build Protobuf locally as a static library. The version distributed with conda-forge is a DLL, but ONNX expects it to be a static library. Building protobuf locally also lets you control the version of protobuf. The tested and recommended version is 3.21.12.

The instructions in this README assume you are using Visual Studio. It is recommended that you run all the commands from a shell started from "x64 Native Tools Command Prompt for VS 2019" and keep the build system generator for cmake (e.g., cmake -G "Visual Studio 16 2019") consistent while building protobuf as well as ONNX.

You can get protobuf by running the following commands:

git clone https://github.com/protocolbuffers/protobuf.git
cd protobuf
git checkout v21.12
cd cmake
cmake -G "Visual Studio 16 2019" -A x64 -DCMAKE_INSTALL_PREFIX=<protobuf_install_dir> -Dprotobuf_MSVC_STATIC_RUNTIME=OFF -Dprotobuf_BUILD_SHARED_LIBS=OFF -Dprotobuf_BUILD_TESTS=OFF -Dprotobuf_BUILD_EXAMPLES=OFF .
msbuild protobuf.sln /m /p:Configuration=Release
msbuild INSTALL.vcxproj /p:Configuration=Release

Then it will be built as a static library and installed to <protobuf_install_dir>. Please add the bin directory(which contains protoc.exe) to your PATH.

set CMAKE_PREFIX_PATH=<protobuf_install_dir>;%CMAKE_PREFIX_PATH%

Please note: if your protobuf_install_dir contains spaces, do not add quotation marks around it.

Alternative: if you don't want to change your PATH, you can set ONNX_PROTOC_EXECUTABLE instead.

set CMAKE_ARGS=-DONNX_PROTOC_EXECUTABLE=<full_path_to_protoc.exe>

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Linux

First, you need to install protobuf. The minimum Protobuf compiler (protoc) version required by ONNX is 3.6.1. Please note that old protoc versions might not work with CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON.

Ubuntu 20.04 (and newer) users may choose to install protobuf via

apt-get install python3-pip python3-dev libprotobuf-dev protobuf-compiler

In this case, it is required to add -DONNX_USE_PROTOBUF_SHARED_LIBS=ON to CMAKE_ARGS in the ONNX build step.

A more general way is to build and install it from source. See the instructions below for more details.

Installing Protobuf from source

Debian/Ubuntu:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v21.12
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

CentOS/RHEL/Fedora:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v21.12
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake  -DCMAKE_INSTALL_LIBDIR=lib64 -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

Here "-DCMAKE_POSITION_INDEPENDENT_CODE=ON" is crucial. By default static libraries are built without "-fPIC" flag, they are not position independent code. But shared libraries must be position independent code. Python C/C++ extensions(like ONNX) are shared libraries. So if a static library was not built with "-fPIC", it can't be linked to such a shared library.

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# Optional: prefer lite proto
export CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Mac

export NUM_CORES=`sysctl -n hw.ncpu`
brew update
brew install autoconf && brew install automake
wget https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protobuf-cpp-3.21.12.tar.gz
tar -xvf protobuf-cpp-3.21.12.tar.gz
cd protobuf-3.21.12
mkdir build_source && cd build_source
cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
make -j${NUM_CORES}
make install

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone --recursive https://github.com/onnx/onnx.git
cd onnx
# Optional: prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Verify Installation

After installation, run

python -c "import onnx"

to verify it works.

Common Build Options

For full list refer to CMakeLists.txt

Environment variables

  • USE_MSVC_STATIC_RUNTIME should be 1 or 0, not ON or OFF. When set to 1 ONNX links statically to runtime library. Default: USE_MSVC_STATIC_RUNTIME=0

  • DEBUG should be 0 or 1. When set to 1 ONNX is built in debug mode. or debug versions of the dependencies, you need to open the CMakeLists file and append a letter d at the end of the package name lines. For example, NAMES protobuf-lite would become NAMES protobuf-lited. Default: Debug=0

CMake variables

  • ONNX_USE_PROTOBUF_SHARED_LIBS should be ON or OFF. Default: ONNX_USE_PROTOBUF_SHARED_LIBS=OFF USE_MSVC_STATIC_RUNTIME=0 ONNX_USE_PROTOBUF_SHARED_LIBS determines how ONNX links to protobuf libraries.

    • When set to ON - ONNX will dynamically link to protobuf shared libs, PROTOBUF_USE_DLLS will be defined as described here.
    • When set to OFF - ONNX will link statically to protobuf.
  • ONNX_USE_LITE_PROTO should be ON or OFF. When set to ON ONNX uses lite protobuf instead of full protobuf. Default: ONNX_USE_LITE_PROTO=OFF

  • ONNX_WERROR should be ON or OFF. When set to ON warnings are treated as errors. Default: ONNX_WERROR=OFF in local builds, ON in CI and release pipelines.

Common Errors

  • Note: the import onnx command does not work from the source checkout directory; in this case you'll see ModuleNotFoundError: No module named 'onnx.onnx_cpp2py_export'. Change into another directory to fix this error.

  • If you run into any issues while building Protobuf as a static library, please ensure that shared Protobuf libraries, like libprotobuf, are not installed on your device or in the conda environment. If these shared libraries exist, either remove them to build Protobuf from source as a static library, or skip the Protobuf build from source to use the shared version directly.

  • If you run into any issues while building ONNX from source, and your error message reads, Could not find pythonXX.lib, ensure that you have consistent Python versions for common commands, such as python and pip. Clean all existing build files and rebuild ONNX again.

Testing

ONNX uses pytest as test driver. In order to run tests, you will first need to install pytest:

pip install pytest nbval

After installing pytest, use the following command to run tests.

pytest

Development

Check out the contributor guide for instructions.

License

Apache License v2.0

Code of Conduct

ONNX Open Source Code of Conduct

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

amd_onnx_weekly-1.18.0.dev20241028.tar.gz (11.4 MB view details)

Uploaded Source

Built Distributions

amd_onnx_weekly-1.18.0.dev20241028-cp312-cp312-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

amd_onnx_weekly-1.18.0.dev20241028-cp312-cp312-win32.whl (14.4 MB view details)

Uploaded CPython 3.12 Windows x86

amd_onnx_weekly-1.18.0.dev20241028-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20241028-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20241028-cp312-cp312-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.12 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.18.0.dev20241028-cp311-cp311-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

amd_onnx_weekly-1.18.0.dev20241028-cp311-cp311-win32.whl (14.4 MB view details)

Uploaded CPython 3.11 Windows x86

amd_onnx_weekly-1.18.0.dev20241028-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20241028-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20241028-cp311-cp311-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.11 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.18.0.dev20241028-cp310-cp310-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

amd_onnx_weekly-1.18.0.dev20241028-cp310-cp310-win32.whl (14.4 MB view details)

Uploaded CPython 3.10 Windows x86

amd_onnx_weekly-1.18.0.dev20241028-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20241028-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20241028-cp310-cp310-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.10 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.18.0.dev20241028-cp39-cp39-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

amd_onnx_weekly-1.18.0.dev20241028-cp39-cp39-win32.whl (14.4 MB view details)

Uploaded CPython 3.9 Windows x86

amd_onnx_weekly-1.18.0.dev20241028-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20241028-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20241028-cp39-cp39-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.9 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.18.0.dev20241028-cp38-cp38-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

amd_onnx_weekly-1.18.0.dev20241028-cp38-cp38-win32.whl (14.4 MB view details)

Uploaded CPython 3.8 Windows x86

amd_onnx_weekly-1.18.0.dev20241028-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20241028-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20241028-cp38-cp38-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.8 macOS 12.0+ universal2 (ARM64, x86-64)

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241028.tar.gz.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241028.tar.gz
Algorithm Hash digest
SHA256 0603153c1f66bd9179ddf9a8a2f20575c7054854ccbc5818a029724b1dd90e25
MD5 ca1e86e7a8332037d79c2ebf3973a175
BLAKE2b-256 e9de44cbe40987d33c749d757f41d3886a7106603ed4e590327424c90de3e74a

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241028-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241028-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 a0684c29f29a632a64b92f717fb3940df032b256434a1fc6e65ba40c76b3a54a
MD5 d4244927628bdf28f1244c020d8f95cb
BLAKE2b-256 26832493f2950bef564b1e6cf5779416ee275975c02b927f19f51c48ffc60d66

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241028-cp312-cp312-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241028-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 55b039bb3c1fc5d8c0aa6a281379ef2bdae166cc1970d8709046b677546f2dbc
MD5 05d8d8625c9e506f42d472ac87bd22eb
BLAKE2b-256 df2b0fa52917f9b8afb71f7aa9a79bb0fe40331bbec467fb8dd86b67b516b75f

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241028-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241028-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 50a5772e0d83b1a1005bbdb73108356a576156db805dab4f6c8774cc9ffc2bda
MD5 81c0e7bef6cfd681e679e7c7457bb1bb
BLAKE2b-256 60bec71d82d93bd7d57db851d823eaa7e206412e26a4ea4ee9a9f093e44f52c7

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241028-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241028-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7595cac4a4951e0337bd240771e66405b2710e086c8a793b19f8228edf59628c
MD5 f828ec0e77b35475c9918c7df9415a0b
BLAKE2b-256 978855632bc8f1285212431cea7a3d6f4fda5852a16b84091efa42a928cc802f

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241028-cp312-cp312-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241028-cp312-cp312-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 d58bd0e595e63274e40bc796e2b909a6fee1201627d1860c49ab97e51cd0ae2a
MD5 1259de61edd2ed0f5172945b49fbd968
BLAKE2b-256 635b12241801ee0a3c4741afb944cdf6bbf1b0ed0b2519d1cbdc90b94d5f4170

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241028-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241028-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 4cd5f5547d7a05541964e94a9525b1858fba185fcd13eaed39f82f57676e97d8
MD5 4e4d70fe847d8c76ab65d7dacb91b528
BLAKE2b-256 d2239722e08226e1a01444b3f4f9a30924729d7e407ba741955a0d312aa321ab

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241028-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241028-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 d402c7dedfc6d17ea81bf395e8f847643d767815a0aadc87b55583c108ca255f
MD5 96bf89d043e991aa13f332a33c80238e
BLAKE2b-256 8d36d63d323a51f94ff2add9ae813b5279b9ff6fe047741431f38a17d31ad5a6

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241028-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241028-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ac88b59c00a2b717c2a338eda6e350d392ad8379196aeea511075c7137d85b2c
MD5 7e4edcff43cf6d5c3cac954ecca48a06
BLAKE2b-256 b58db77ae712503caa99f487e1bafe5dfc74d9f14a9127988aa7b24f677681c4

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241028-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241028-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9b79383aefa2d13743e7d5325b9cb9af98445d9369c635096fbc3f0b6810c1c0
MD5 0523f663d8edf33ac1e5517b4769a5d0
BLAKE2b-256 2612bea2787a7f5a9404628255253a70bc5dcb613bbfc3e508e4fb21ea812f22

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241028-cp311-cp311-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241028-cp311-cp311-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 f96425e582c622ba6ba274b04f6681ce8bfc668b4b86cc573957db5a96b37d0d
MD5 2ec75da34338ca3044f20e168e97bfb7
BLAKE2b-256 451756490d92b33b4261e58ec0f0c026bff6fbb8b592b96a23ab74abb428ffca

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241028-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241028-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a28a10d05c6cdc3de2f9a2d9bf4c48f66b9427d6aa00e826414e032b519f2f33
MD5 452ca25a1e5eaf0c94d0b64a4bc012be
BLAKE2b-256 b447929233ee32751db2920c83ebea366dbcbc8449a9de8f0939ff1054a81875

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241028-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241028-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 31292c87e62edd8c0d3477c9b6c2a381f8ba32ce5be19052f8df0eaea239bc05
MD5 49d7a0ca7a519d1aae5599df2799b1eb
BLAKE2b-256 2c3b11da30a380172599d643f1cf6fc24abfd9b65469c91c0cc69ca644ab59c4

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241028-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241028-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 10a9e749fd41840fd71a86e7e9ecb7a735b2fb7ef33aa2fb1d2fa4ab3dba1648
MD5 3c51b58e3bc5b704059c9f591ad76be2
BLAKE2b-256 7b0f77a298cd7f9535c04dc940f004999c586ef5e2dddaca4f1f3b3b7e22b955

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241028-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241028-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5b4489c04e487a2ea7c105290371620bf4bc4451f60e1e96a7cf450f9f1569e9
MD5 c6197ebea2fcb4676d1ee1b260d1b338
BLAKE2b-256 eab7ad05d54d874e618e747bc03b89ac2549c4d5ebc215d8a0a61470e7fdcceb

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241028-cp310-cp310-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241028-cp310-cp310-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 a34cc89cf449abedbf9dd635f757263b991f2d271b40b0c4ac95201843aa9c69
MD5 7f0bcaa9c3c51c6573cf93d0fc4b5ec0
BLAKE2b-256 7d29c06d133441cf34b9c4b7a6faeac803a2536f3cae277a096431ae8091a867

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241028-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241028-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 20cddc80cf4e9841d967a5f8103b7219aa84c8f7b4534a66e7c6156090ed15d9
MD5 3409a0917d4ecef3578bf4c2f660c448
BLAKE2b-256 55ee81c3b300fe3535b835ece85eea3023a76c0779b5419351c6118d59102d3f

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241028-cp39-cp39-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241028-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 f340df40262615bed5a2fe6681be9c618984fa9791172779a4de65df68d8ce95
MD5 cee1a949773331b3b8fd6eee61c79839
BLAKE2b-256 e0d914470ded0eb9b7a03ebaaa7132c94db39e6b6ad34cb8cddc14b639a86191

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241028-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241028-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e6cfb8af34fd0ae29a06a8aa6649b0f37bf67479eb9939d68b43e692698d45db
MD5 959fd6c2b443a8bff510d9516c65b3c8
BLAKE2b-256 b0e2bec54b0bb66608731c3c5fb17c58e02136b5db3ffa7ae6af3617d84a92bb

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241028-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241028-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d16865693bc660b14e276d311b69733741f5d1bff3c023b8e968d07cc589e06d
MD5 47a381cfaa738be120576ba4fc088736
BLAKE2b-256 286debb22f4d10f7f9740020fd15b2f671168b24624e0beef0d6c2642bba65ac

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241028-cp39-cp39-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241028-cp39-cp39-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 fe555da9ccd1555e4752aa0db6c1864c0b33f6af773f8e8f2f36e69a5fa591e6
MD5 0bcbcbab7d9ffe7c2539c6a7ff4b235e
BLAKE2b-256 f2393de84ce199be476253ac02ccbcfafcf35bf2aa63755be8f30a77501680f5

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241028-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241028-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ef263e0e4a097a37708a067ada3a95736abe29cd8b7cfaa247fef70ca75bfde0
MD5 e33e5538d490dfa75a7fe7b90bcd8108
BLAKE2b-256 98852ba7c05e637cdbba3ecaf90f9976b3656f7c3c9c2d7fe1e7d87cd8e2fb2f

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241028-cp38-cp38-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241028-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 bcf987a8f8c1d1f77f87f2b05788dd02bb63bb80583e84228e017ea4a2ed2fc1
MD5 406f5356396348880ed1d1ebdb1cca55
BLAKE2b-256 cb81ae36b3938eacc11a0aee7e7836ab254a320453ec697c22c0fecdca99b61c

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241028-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241028-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ae7d5036b5b274e0c564a8a60a6610511d86064c3a0870341e7c2c6cff54c60c
MD5 a53bffe343999c5d3ca38d1cd5d9c55a
BLAKE2b-256 f1adf5c1f6727b46d3518c702137060d6e1734573ba8adddcaede66adf39ddef

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241028-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241028-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cc082175f90973415042a60091417d5ae77fb665a929598e64ed1319fffd1dc7
MD5 c64c6ed2ebfb1398bf960e8ec79fb5c4
BLAKE2b-256 34dd4de74ac7061f679c88417f59013b15283f3c9c7718e3c104cb05dc7ea210

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241028-cp38-cp38-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241028-cp38-cp38-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 e618c375440224734dbec77963021eb6105af1739e12b33385fc6faa87371193
MD5 638ba5f995d84a6736e34d8d2c5d5f4f
BLAKE2b-256 7a0b93948522af403a03773b4729abfeb9f60b6d3cb58f5ee38b2f89fc79b57f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page