Skip to main content

Open Neural Network Exchange

Project description

PyPI - Version CI CII Best Practices OpenSSF Scorecard REUSE compliant Ruff Black

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Currently we focus on the capabilities needed for inferencing (scoring).

ONNX is widely supported and can be found in many frameworks, tools, and hardware. Enabling interoperability between different frameworks and streamlining the path from research to production helps increase the speed of innovation in the AI community. We invite the community to join us and further evolve ONNX.

Use ONNX

Learn about the ONNX spec

Programming utilities for working with ONNX Graphs

Contribute

ONNX is a community project and the open governance model is described here. We encourage you to join the effort and contribute feedback, ideas, and code. You can participate in the Special Interest Groups and Working Groups to shape the future of ONNX.

Check out our contribution guide to get started.

If you think some operator should be added to ONNX specification, please read this document.

Community meetings

The schedules of the regular meetings of the Steering Committee, the working groups and the SIGs can be found here

Community Meetups are held at least once a year. Content from previous community meetups are at:

Discuss

We encourage you to open Issues, or use Slack (If you have not joined yet, please use this link to join the group) for more real-time discussion.

Follow Us

Stay up to date with the latest ONNX news. [Facebook] [Twitter]

Roadmap

A roadmap process takes place every year. More details can be found here

Installation

Official Python packages

ONNX released packages are published in PyPi.

pip install onnx  # or pip install onnx[reference] for optional reference implementation dependencies

AMD's ONNX weekly packages are published in PyPI to enable experimentation and early testing.

vcpkg packages

ONNX is in the maintenance list of vcpkg, you can easily use vcpkg to build and install it.

git clone https://github.com/microsoft/vcpkg.git
cd vcpkg
./bootstrap-vcpkg.bat # For powershell
./bootstrap-vcpkg.sh # For bash
./vcpkg install onnx

Conda packages

A binary build of ONNX is available from Conda, in conda-forge:

conda install -c conda-forge onnx

Build ONNX from Source

Before building from source uninstall any existing versions of ONNX pip uninstall onnx.

C++17 or higher C++ compiler version is required to build ONNX from source. Still, users can specify their own CMAKE_CXX_STANDARD version for building ONNX.

If you don't have protobuf installed, ONNX will internally download and build protobuf for ONNX build.

Or, you can manually install protobuf C/C++ libraries and tools with specified version before proceeding forward. Then depending on how you installed protobuf, you need to set environment variable CMAKE_ARGS to "-DONNX_USE_PROTOBUF_SHARED_LIBS=ON" or "-DONNX_USE_PROTOBUF_SHARED_LIBS=OFF". For example, you may need to run the following command:

Linux:

export CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

Windows:

set CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

The ON/OFF depends on what kind of protobuf library you have. Shared libraries are files ending with *.dll/*.so/*.dylib. Static libraries are files ending with *.a/*.lib. This option depends on how you get your protobuf library and how it was built. And it is default OFF. You don't need to run the commands above if you'd prefer to use a static protobuf library.

Windows

If you are building ONNX from source, it is recommended that you also build Protobuf locally as a static library. The version distributed with conda-forge is a DLL, but ONNX expects it to be a static library. Building protobuf locally also lets you control the version of protobuf. The tested and recommended version is 3.21.12.

The instructions in this README assume you are using Visual Studio. It is recommended that you run all the commands from a shell started from "x64 Native Tools Command Prompt for VS 2019" and keep the build system generator for cmake (e.g., cmake -G "Visual Studio 16 2019") consistent while building protobuf as well as ONNX.

You can get protobuf by running the following commands:

git clone https://github.com/protocolbuffers/protobuf.git
cd protobuf
git checkout v21.12
cd cmake
cmake -G "Visual Studio 16 2019" -A x64 -DCMAKE_INSTALL_PREFIX=<protobuf_install_dir> -Dprotobuf_MSVC_STATIC_RUNTIME=OFF -Dprotobuf_BUILD_SHARED_LIBS=OFF -Dprotobuf_BUILD_TESTS=OFF -Dprotobuf_BUILD_EXAMPLES=OFF .
msbuild protobuf.sln /m /p:Configuration=Release
msbuild INSTALL.vcxproj /p:Configuration=Release

Then it will be built as a static library and installed to <protobuf_install_dir>. Please add the bin directory(which contains protoc.exe) to your PATH.

set CMAKE_PREFIX_PATH=<protobuf_install_dir>;%CMAKE_PREFIX_PATH%

Please note: if your protobuf_install_dir contains spaces, do not add quotation marks around it.

Alternative: if you don't want to change your PATH, you can set ONNX_PROTOC_EXECUTABLE instead.

set CMAKE_ARGS=-DONNX_PROTOC_EXECUTABLE=<full_path_to_protoc.exe>

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Linux

First, you need to install protobuf. The minimum Protobuf compiler (protoc) version required by ONNX is 3.6.1. Please note that old protoc versions might not work with CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON.

Ubuntu 20.04 (and newer) users may choose to install protobuf via

apt-get install python3-pip python3-dev libprotobuf-dev protobuf-compiler

In this case, it is required to add -DONNX_USE_PROTOBUF_SHARED_LIBS=ON to CMAKE_ARGS in the ONNX build step.

A more general way is to build and install it from source. See the instructions below for more details.

Installing Protobuf from source

Debian/Ubuntu:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v21.12
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

CentOS/RHEL/Fedora:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v21.12
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake  -DCMAKE_INSTALL_LIBDIR=lib64 -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

Here "-DCMAKE_POSITION_INDEPENDENT_CODE=ON" is crucial. By default static libraries are built without "-fPIC" flag, they are not position independent code. But shared libraries must be position independent code. Python C/C++ extensions(like ONNX) are shared libraries. So if a static library was not built with "-fPIC", it can't be linked to such a shared library.

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# Optional: prefer lite proto
export CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Mac

export NUM_CORES=`sysctl -n hw.ncpu`
brew update
brew install autoconf && brew install automake
wget https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protobuf-cpp-3.21.12.tar.gz
tar -xvf protobuf-cpp-3.21.12.tar.gz
cd protobuf-3.21.12
mkdir build_source && cd build_source
cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
make -j${NUM_CORES}
make install

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone --recursive https://github.com/onnx/onnx.git
cd onnx
# Optional: prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Verify Installation

After installation, run

python -c "import onnx"

to verify it works.

Common Build Options

For full list refer to CMakeLists.txt

Environment variables

  • USE_MSVC_STATIC_RUNTIME should be 1 or 0, not ON or OFF. When set to 1 ONNX links statically to runtime library. Default: USE_MSVC_STATIC_RUNTIME=0

  • DEBUG should be 0 or 1. When set to 1 ONNX is built in debug mode. or debug versions of the dependencies, you need to open the CMakeLists file and append a letter d at the end of the package name lines. For example, NAMES protobuf-lite would become NAMES protobuf-lited. Default: Debug=0

CMake variables

  • ONNX_USE_PROTOBUF_SHARED_LIBS should be ON or OFF. Default: ONNX_USE_PROTOBUF_SHARED_LIBS=OFF USE_MSVC_STATIC_RUNTIME=0 ONNX_USE_PROTOBUF_SHARED_LIBS determines how ONNX links to protobuf libraries.

    • When set to ON - ONNX will dynamically link to protobuf shared libs, PROTOBUF_USE_DLLS will be defined as described here.
    • When set to OFF - ONNX will link statically to protobuf.
  • ONNX_USE_LITE_PROTO should be ON or OFF. When set to ON ONNX uses lite protobuf instead of full protobuf. Default: ONNX_USE_LITE_PROTO=OFF

  • ONNX_WERROR should be ON or OFF. When set to ON warnings are treated as errors. Default: ONNX_WERROR=OFF in local builds, ON in CI and release pipelines.

Common Errors

  • Note: the import onnx command does not work from the source checkout directory; in this case you'll see ModuleNotFoundError: No module named 'onnx.onnx_cpp2py_export'. Change into another directory to fix this error.

  • If you run into any issues while building Protobuf as a static library, please ensure that shared Protobuf libraries, like libprotobuf, are not installed on your device or in the conda environment. If these shared libraries exist, either remove them to build Protobuf from source as a static library, or skip the Protobuf build from source to use the shared version directly.

  • If you run into any issues while building ONNX from source, and your error message reads, Could not find pythonXX.lib, ensure that you have consistent Python versions for common commands, such as python and pip. Clean all existing build files and rebuild ONNX again.

Testing

ONNX uses pytest as test driver. In order to run tests, you will first need to install pytest:

pip install pytest nbval

After installing pytest, use the following command to run tests.

pytest

Development

Check out the contributor guide for instructions.

License

Apache License v2.0

Code of Conduct

ONNX Open Source Code of Conduct

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

amd_onnx_weekly-1.18.0.dev20241104.tar.gz (11.4 MB view details)

Uploaded Source

Built Distributions

amd_onnx_weekly-1.18.0.dev20241104-cp312-cp312-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

amd_onnx_weekly-1.18.0.dev20241104-cp312-cp312-win32.whl (14.4 MB view details)

Uploaded CPython 3.12 Windows x86

amd_onnx_weekly-1.18.0.dev20241104-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20241104-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20241104-cp312-cp312-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.12 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.18.0.dev20241104-cp311-cp311-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

amd_onnx_weekly-1.18.0.dev20241104-cp311-cp311-win32.whl (14.4 MB view details)

Uploaded CPython 3.11 Windows x86

amd_onnx_weekly-1.18.0.dev20241104-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20241104-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20241104-cp311-cp311-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.11 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.18.0.dev20241104-cp310-cp310-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

amd_onnx_weekly-1.18.0.dev20241104-cp310-cp310-win32.whl (14.4 MB view details)

Uploaded CPython 3.10 Windows x86

amd_onnx_weekly-1.18.0.dev20241104-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20241104-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20241104-cp310-cp310-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.10 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.18.0.dev20241104-cp39-cp39-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

amd_onnx_weekly-1.18.0.dev20241104-cp39-cp39-win32.whl (14.4 MB view details)

Uploaded CPython 3.9 Windows x86

amd_onnx_weekly-1.18.0.dev20241104-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20241104-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20241104-cp39-cp39-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.9 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.18.0.dev20241104-cp38-cp38-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

amd_onnx_weekly-1.18.0.dev20241104-cp38-cp38-win32.whl (14.4 MB view details)

Uploaded CPython 3.8 Windows x86

amd_onnx_weekly-1.18.0.dev20241104-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20241104-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20241104-cp38-cp38-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.8 macOS 12.0+ universal2 (ARM64, x86-64)

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241104.tar.gz.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241104.tar.gz
Algorithm Hash digest
SHA256 91109e279e651452b9315ed9cc521219af516645193cd49a44caa81ec5e1164b
MD5 c78611138e591a304364fdac02fbb58b
BLAKE2b-256 0ac67a1719520448c001d589e43dcf49cd232eb85167b946358e792205e72943

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241104-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241104-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 53b2ec546f86d216bec3e0a79425841cb1d0abb6ccccf2be35771faf99286713
MD5 841fc50788132c6d17d7fd19a2484bcf
BLAKE2b-256 8037a915706e73baac2956f4f6f492021be9d57fab5140b0c593234417f73a36

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241104-cp312-cp312-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241104-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 464dadf730062f93d580bfc489339898e4652b71b8db92fca6ad3167c73415e7
MD5 7abed0cc8eea3b1060a29737b7f818ac
BLAKE2b-256 e978b4c4a356cc8628c24aa4c2159a209320e00d64217745c78bf7c21dc352af

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241104-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241104-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e601d6eec94fdc9194bdafae4fc5eac62c4b18bf340fe363d161e94abef3a778
MD5 7e5f913766a686cc4d3d7bb5e5bccbf3
BLAKE2b-256 bd485f06b3af3ff92b15fbc0b8b58bafe4c5ca1b6932bb42c4de5d3756770b8f

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241104-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241104-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 42e7261f5fe6a687768aab02ae80a0e2ecff8928c415fde02718b59b1c12aed2
MD5 23890ad8fc457c8742939423492f6eea
BLAKE2b-256 db64d064aa29988a8cbce06fe32431a28b7beee94973ac60cf9d53e87d1276b9

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241104-cp312-cp312-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241104-cp312-cp312-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 c1e4cd592e1774f7ce33478faac35d57c51d4d032e583e3cddb065ecb30d5a9f
MD5 1eaf0431bf3f777310feb5e317712c1a
BLAKE2b-256 ad15bb612b4d3f0087780977ba27835647792ca09d544764dbf1e9be36750177

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241104-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241104-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 fb5774451e1c4ccf540d57bed1c5900c2f837188b86e07a73f85d9ecba451abc
MD5 532d3ff1f712d092217867c25e2da33f
BLAKE2b-256 b7404cfa14972b82ed0b0edca607d3d9cf7c323927a973f49d9148191a7e5103

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241104-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241104-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 5e6b12750563bbdcd4f26789718911ced6235daf7a7331467864a25c730d15fc
MD5 98138e2962c31ba7f5c6b9528d56c0cf
BLAKE2b-256 3ffbcc486255037cd5e03edf38317257f3a45c6d876f69352291914c63d1f62b

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241104-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241104-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7b358d7f0d81e153b0f950f7435c74f0f25f3dea1ce1a2aa5714d5c085ec4aa4
MD5 7b42755df359c77f4c9df4cd3e2198c8
BLAKE2b-256 f668cbb3291f631bd71eebb8d0747068152cf6b03682f033a6fbbdb7de4d7eaa

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241104-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241104-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e1eb13e0324245eaedfd381dbb26320ff2ac9afd3fab3393c7af3c3d8c7ed3b1
MD5 fa73afefb5e1ade2dcea3d6c0d5338a7
BLAKE2b-256 e3b2c47a93349bd64ff6ca0e63a4789f2b1853312d14e57fa6f719f766ff10dd

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241104-cp311-cp311-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241104-cp311-cp311-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 35bec7c821d559d6530bc03727f1f57f457963e222907d7bd0bd69504041b0cb
MD5 620a72b2b09fd45597208b4fb8512dde
BLAKE2b-256 93a3c949ed369be1c4011bdbef30b0a273964b54a02a212d1debe62ca3c3c35f

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241104-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241104-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 81e5a6141eae30cec2e6bbda91b6dad89a339c3d11df51be16692185afd50ec1
MD5 1cc22ea4ce85cf4fb67ceacf72f71f14
BLAKE2b-256 2890465843dea251daa548743a2fc573f1c102be5a01d5e91d604a87a4c3cf6e

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241104-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241104-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 8481f3f15a8a5745629f62ff8f703c54ee7cce8e081b8391c0873ee46e1931b2
MD5 9d6a1dbd5092777ee8db96a8a279bd5e
BLAKE2b-256 03915024c3d6ad8903135a74d9e154d14ca395c3d90df0554e27a5b58292a206

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241104-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241104-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f78338f85490180c2ac04f2895f1a0a9e49ee143cd7793760fad88039a058ce3
MD5 7fcad53dba27eee17ae3d1f896d5801f
BLAKE2b-256 e5f92eac0056092ae36032780fff57b2de558c8e8c907317acba4d2c758d009b

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241104-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241104-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 dc1878d52b1358d71ef94e440c02e325648797e630e9a49040d3f72c651ce93c
MD5 889e70e081451f2e30c362877c7b4a12
BLAKE2b-256 0f6fbe02b48d9d7626f61d26053407e8ff352e4fbf021476a9f74d672e95fbce

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241104-cp310-cp310-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241104-cp310-cp310-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 90ae4c1c7aa201f0fc0bf6f0b7b97a9c61c8a102070b0078a35b9ce9fa19a4b7
MD5 a087dbfcba381b001f7969e0cd8fa6ce
BLAKE2b-256 7472706d7cd434dc57ec3aa3dc369704e03d4a0a8e9e6e8a4fa8913b6d4108a9

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241104-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241104-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 dae9a55112e20abad3115530601250610df9518f9760427c5b442d8b9e795fae
MD5 9a838f5d23628fd8d986da399c74c1e3
BLAKE2b-256 23ff8846d643197a1a5a022766c4c6e843ed3d7e44389d4fe622421f7804dca5

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241104-cp39-cp39-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241104-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 72fabd424365599b9308cf3894634bbe43433bd13d6ab54322f809bf8651195e
MD5 bdb6e15afef5d6d1e220a15b987ab92e
BLAKE2b-256 8bc5a2adc3d2e79762adf75eda748c1904ca2da1d190d3241b9319f24e7efde0

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241104-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241104-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 99a2806a403751f46d227457c65c131f92f4d9093c56b1983e7b24984e6abce5
MD5 b2866727c90b38a75c894fb12cce1411
BLAKE2b-256 174757ebbf116a27b74379fb40775d00a3a7990ce54d70303b6a5cfad18f47d6

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241104-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241104-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2e62fcf3c620f758e792ff06b78b7c8ed155c1c9e1474c397d034678fb1645bb
MD5 892fe47e25a708393b1b071b75bcc0a3
BLAKE2b-256 9e2920268f340368db894f65dc0fb4d7a83e39bbf1ff057ed8e42ae932b864f9

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241104-cp39-cp39-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241104-cp39-cp39-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 6412f6967426889d40e9f7705bfe17c098c2c47de41f6197fc6d0b7538101b91
MD5 f61a3a37ff23921273b399b820384cd9
BLAKE2b-256 44044a698635e06cb40b9b6df8e4191d1ff037a7e72df43f2bbdecb4d2933de9

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241104-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241104-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 0ddcd303ddf2934026f12948e5a0db173222dda4b0b2f572e53881dc821a429f
MD5 1928ee0327b7436e2d0bdc7060323971
BLAKE2b-256 7528cef9e63d2e79a3399e6114ced27faa2e11730ed888402d73f08c4d8f4b18

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241104-cp38-cp38-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241104-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 3e10a82227b5f5b1354cc4a74319d2866ba60ec451b9f4ccbf50081e408fa377
MD5 b58fb326085ecb64bcd33d322039f9e8
BLAKE2b-256 6adb839750abac6025b48903cb27a798b71091dbc44ca8ef46089af605e19a38

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241104-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241104-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a19f7b7933ed462f21df3f79534701452d69d536c570c67e6d6ca8d76484eea6
MD5 9be5a4a7fc9b1108ca4a40a917428c70
BLAKE2b-256 3f1995fb6b23c79e5a98e52895998ad69730da09010e0f5eccbfe37bf645d97b

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241104-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241104-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2b4ff6c97fcde8543fe79506b081dad88ce7adcd8b160aa521738c7c84288c17
MD5 03785c9c50647486fe652a34040d2719
BLAKE2b-256 81af7eb788f85a01dc8187618ffe2df80cee7e6776d88d05d137e037a5fbdc0b

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241104-cp38-cp38-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241104-cp38-cp38-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 0f9781ae9ccc6e8ec75c3e156d106e593dc1e3e05e5399bc980e3530a3f3590c
MD5 724c5665a3d6af607dfffba1792368e8
BLAKE2b-256 2722c9f0573e9d2c7168ede83da2bc55adbe8be9c7b2d6172db768ea6e4ab354

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page