Skip to main content

Open Neural Network Exchange

Project description

PyPI - Version CI CII Best Practices OpenSSF Scorecard REUSE compliant Ruff Black

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Currently we focus on the capabilities needed for inferencing (scoring).

ONNX is widely supported and can be found in many frameworks, tools, and hardware. Enabling interoperability between different frameworks and streamlining the path from research to production helps increase the speed of innovation in the AI community. We invite the community to join us and further evolve ONNX.

Use ONNX

Learn about the ONNX spec

Programming utilities for working with ONNX Graphs

Contribute

ONNX is a community project and the open governance model is described here. We encourage you to join the effort and contribute feedback, ideas, and code. You can participate in the Special Interest Groups and Working Groups to shape the future of ONNX.

Check out our contribution guide to get started.

If you think some operator should be added to ONNX specification, please read this document.

Community meetings

The schedules of the regular meetings of the Steering Committee, the working groups and the SIGs can be found here

Community Meetups are held at least once a year. Content from previous community meetups are at:

Discuss

We encourage you to open Issues, or use Slack (If you have not joined yet, please use this link to join the group) for more real-time discussion.

Follow Us

Stay up to date with the latest ONNX news. [Facebook] [Twitter]

Roadmap

A roadmap process takes place every year. More details can be found here

Installation

Official Python packages

ONNX released packages are published in PyPi.

pip install onnx  # or pip install onnx[reference] for optional reference implementation dependencies

AMD's ONNX weekly packages are published in PyPI to enable experimentation and early testing.

vcpkg packages

ONNX is in the maintenance list of vcpkg, you can easily use vcpkg to build and install it.

git clone https://github.com/microsoft/vcpkg.git
cd vcpkg
./bootstrap-vcpkg.bat # For powershell
./bootstrap-vcpkg.sh # For bash
./vcpkg install onnx

Conda packages

A binary build of ONNX is available from Conda, in conda-forge:

conda install -c conda-forge onnx

Build ONNX from Source

Before building from source uninstall any existing versions of ONNX pip uninstall onnx.

C++17 or higher C++ compiler version is required to build ONNX from source. Still, users can specify their own CMAKE_CXX_STANDARD version for building ONNX.

If you don't have protobuf installed, ONNX will internally download and build protobuf for ONNX build.

Or, you can manually install protobuf C/C++ libraries and tools with specified version before proceeding forward. Then depending on how you installed protobuf, you need to set environment variable CMAKE_ARGS to "-DONNX_USE_PROTOBUF_SHARED_LIBS=ON" or "-DONNX_USE_PROTOBUF_SHARED_LIBS=OFF". For example, you may need to run the following command:

Linux:

export CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

Windows:

set CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

The ON/OFF depends on what kind of protobuf library you have. Shared libraries are files ending with *.dll/*.so/*.dylib. Static libraries are files ending with *.a/*.lib. This option depends on how you get your protobuf library and how it was built. And it is default OFF. You don't need to run the commands above if you'd prefer to use a static protobuf library.

Windows

If you are building ONNX from source, it is recommended that you also build Protobuf locally as a static library. The version distributed with conda-forge is a DLL, but ONNX expects it to be a static library. Building protobuf locally also lets you control the version of protobuf. The tested and recommended version is 3.21.12.

The instructions in this README assume you are using Visual Studio. It is recommended that you run all the commands from a shell started from "x64 Native Tools Command Prompt for VS 2019" and keep the build system generator for cmake (e.g., cmake -G "Visual Studio 16 2019") consistent while building protobuf as well as ONNX.

You can get protobuf by running the following commands:

git clone https://github.com/protocolbuffers/protobuf.git
cd protobuf
git checkout v21.12
cd cmake
cmake -G "Visual Studio 16 2019" -A x64 -DCMAKE_INSTALL_PREFIX=<protobuf_install_dir> -Dprotobuf_MSVC_STATIC_RUNTIME=OFF -Dprotobuf_BUILD_SHARED_LIBS=OFF -Dprotobuf_BUILD_TESTS=OFF -Dprotobuf_BUILD_EXAMPLES=OFF .
msbuild protobuf.sln /m /p:Configuration=Release
msbuild INSTALL.vcxproj /p:Configuration=Release

Then it will be built as a static library and installed to <protobuf_install_dir>. Please add the bin directory(which contains protoc.exe) to your PATH.

set CMAKE_PREFIX_PATH=<protobuf_install_dir>;%CMAKE_PREFIX_PATH%

Please note: if your protobuf_install_dir contains spaces, do not add quotation marks around it.

Alternative: if you don't want to change your PATH, you can set ONNX_PROTOC_EXECUTABLE instead.

set CMAKE_ARGS=-DONNX_PROTOC_EXECUTABLE=<full_path_to_protoc.exe>

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Linux

First, you need to install protobuf. The minimum Protobuf compiler (protoc) version required by ONNX is 3.6.1. Please note that old protoc versions might not work with CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON.

Ubuntu 20.04 (and newer) users may choose to install protobuf via

apt-get install python3-pip python3-dev libprotobuf-dev protobuf-compiler

In this case, it is required to add -DONNX_USE_PROTOBUF_SHARED_LIBS=ON to CMAKE_ARGS in the ONNX build step.

A more general way is to build and install it from source. See the instructions below for more details.

Installing Protobuf from source

Debian/Ubuntu:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v21.12
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

CentOS/RHEL/Fedora:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v21.12
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake  -DCMAKE_INSTALL_LIBDIR=lib64 -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

Here "-DCMAKE_POSITION_INDEPENDENT_CODE=ON" is crucial. By default static libraries are built without "-fPIC" flag, they are not position independent code. But shared libraries must be position independent code. Python C/C++ extensions(like ONNX) are shared libraries. So if a static library was not built with "-fPIC", it can't be linked to such a shared library.

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# Optional: prefer lite proto
export CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Mac

export NUM_CORES=`sysctl -n hw.ncpu`
brew update
brew install autoconf && brew install automake
wget https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protobuf-cpp-3.21.12.tar.gz
tar -xvf protobuf-cpp-3.21.12.tar.gz
cd protobuf-3.21.12
mkdir build_source && cd build_source
cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
make -j${NUM_CORES}
make install

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone --recursive https://github.com/onnx/onnx.git
cd onnx
# Optional: prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e . -v

Verify Installation

After installation, run

python -c "import onnx"

to verify it works.

Common Build Options

For full list refer to CMakeLists.txt

Environment variables

  • USE_MSVC_STATIC_RUNTIME should be 1 or 0, not ON or OFF. When set to 1 ONNX links statically to runtime library. Default: USE_MSVC_STATIC_RUNTIME=0

  • DEBUG should be 0 or 1. When set to 1 ONNX is built in debug mode. or debug versions of the dependencies, you need to open the CMakeLists file and append a letter d at the end of the package name lines. For example, NAMES protobuf-lite would become NAMES protobuf-lited. Default: Debug=0

CMake variables

  • ONNX_USE_PROTOBUF_SHARED_LIBS should be ON or OFF. Default: ONNX_USE_PROTOBUF_SHARED_LIBS=OFF USE_MSVC_STATIC_RUNTIME=0 ONNX_USE_PROTOBUF_SHARED_LIBS determines how ONNX links to protobuf libraries.

    • When set to ON - ONNX will dynamically link to protobuf shared libs, PROTOBUF_USE_DLLS will be defined as described here.
    • When set to OFF - ONNX will link statically to protobuf.
  • ONNX_USE_LITE_PROTO should be ON or OFF. When set to ON ONNX uses lite protobuf instead of full protobuf. Default: ONNX_USE_LITE_PROTO=OFF

  • ONNX_WERROR should be ON or OFF. When set to ON warnings are treated as errors. Default: ONNX_WERROR=OFF in local builds, ON in CI and release pipelines.

Common Errors

  • Note: the import onnx command does not work from the source checkout directory; in this case you'll see ModuleNotFoundError: No module named 'onnx.onnx_cpp2py_export'. Change into another directory to fix this error.

  • If you run into any issues while building Protobuf as a static library, please ensure that shared Protobuf libraries, like libprotobuf, are not installed on your device or in the conda environment. If these shared libraries exist, either remove them to build Protobuf from source as a static library, or skip the Protobuf build from source to use the shared version directly.

  • If you run into any issues while building ONNX from source, and your error message reads, Could not find pythonXX.lib, ensure that you have consistent Python versions for common commands, such as python and pip. Clean all existing build files and rebuild ONNX again.

Testing

ONNX uses pytest as test driver. In order to run tests, you will first need to install pytest:

pip install pytest nbval

After installing pytest, use the following command to run tests.

pytest

Development

Check out the contributor guide for instructions.

License

Apache License v2.0

Code of Conduct

ONNX Open Source Code of Conduct

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

amd_onnx_weekly-1.18.0.dev20241111.tar.gz (11.4 MB view details)

Uploaded Source

Built Distributions

amd_onnx_weekly-1.18.0.dev20241111-cp312-cp312-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

amd_onnx_weekly-1.18.0.dev20241111-cp312-cp312-win32.whl (14.4 MB view details)

Uploaded CPython 3.12 Windows x86

amd_onnx_weekly-1.18.0.dev20241111-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20241111-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20241111-cp312-cp312-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.12 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.18.0.dev20241111-cp311-cp311-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

amd_onnx_weekly-1.18.0.dev20241111-cp311-cp311-win32.whl (14.4 MB view details)

Uploaded CPython 3.11 Windows x86

amd_onnx_weekly-1.18.0.dev20241111-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20241111-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20241111-cp311-cp311-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.11 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.18.0.dev20241111-cp310-cp310-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

amd_onnx_weekly-1.18.0.dev20241111-cp310-cp310-win32.whl (14.4 MB view details)

Uploaded CPython 3.10 Windows x86

amd_onnx_weekly-1.18.0.dev20241111-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20241111-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20241111-cp310-cp310-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.10 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.18.0.dev20241111-cp39-cp39-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

amd_onnx_weekly-1.18.0.dev20241111-cp39-cp39-win32.whl (14.4 MB view details)

Uploaded CPython 3.9 Windows x86

amd_onnx_weekly-1.18.0.dev20241111-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20241111-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20241111-cp39-cp39-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.9 macOS 12.0+ universal2 (ARM64, x86-64)

amd_onnx_weekly-1.18.0.dev20241111-cp38-cp38-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

amd_onnx_weekly-1.18.0.dev20241111-cp38-cp38-win32.whl (14.4 MB view details)

Uploaded CPython 3.8 Windows x86

amd_onnx_weekly-1.18.0.dev20241111-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

amd_onnx_weekly-1.18.0.dev20241111-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

amd_onnx_weekly-1.18.0.dev20241111-cp38-cp38-macosx_12_0_universal2.whl (16.6 MB view details)

Uploaded CPython 3.8 macOS 12.0+ universal2 (ARM64, x86-64)

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241111.tar.gz.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241111.tar.gz
Algorithm Hash digest
SHA256 e184ea8b28a6fb02fa2a19560706cd817ade7007a170cd472f6473902872755a
MD5 5fb0708e760f11ae7d57fd82dcf0f6f4
BLAKE2b-256 7fe2a66bf1a3c5755e76032b7011fff4b0376d1400e70fa26c1f17f59b6a9c8d

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241111-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241111-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 4d8e5605fa6033a7bdf14a8d8cae2981eae3353dfb57b04a520c6df90f159858
MD5 bd9e20f3ce355841e500a3046b46301b
BLAKE2b-256 c6a326871dc7a5141a6e9c480323daee111811acd07b57c10d298655833bb111

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241111-cp312-cp312-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241111-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 2bf2b2615c57fd461c48a5212b3b1a4ecceeaff5e223dc12c14242d551ca343c
MD5 485e3e3565d64e0d907055f7208093e7
BLAKE2b-256 533c57b00665521e5394c6ea5c29779802db838826a7e4e84524b762f4c20ce0

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241111-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241111-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 26f984ad9b1afc68536902281b210d8b4ccd8dca996f34912518be8bbcfac396
MD5 6dad2b5414d7cbbdbcbd5a7fe86471fb
BLAKE2b-256 f5cf1c3bad7b6b7fdf80dbc84679e859ceea9170e15ddf0d449eebfd24c5c68b

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241111-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241111-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7e75df6300f864141291ab54d257c0a2f3bc65101d631801f8f0aaac491b6c35
MD5 744da4ab1e0657d9bbd93d0e6e839aba
BLAKE2b-256 d81243cba299fe39c13a4086ca5f3e40628ca21c33fcab7f65cffc522fd8f1d0

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241111-cp312-cp312-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241111-cp312-cp312-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 df3e2138ef40554d9b2ee70251617ef233336cad8c3d6beb3305c151ee11e33c
MD5 14f5434addde70901834d60f7fd8d62f
BLAKE2b-256 36f71220d96048c8b5e9ea705f32ae29ceff1fc3c345a399fae0fabc90a21419

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241111-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241111-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 961f66aac183c9b838ad8bc02f584679dc8fba173b48d9373cd3ed17b4e72f58
MD5 97ff5d577cf404451630ead3f57a7881
BLAKE2b-256 2b86c420b8a0f421706530ec6ea2c6be7ee2680ef02d0120e4b0da85e828b46e

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241111-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241111-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 edd8a1c840fea38d416d1e8fb08f95ac88c85b7f569f2d0e95619bf202abfa8e
MD5 cfebf5e3ceed172944520c9507e3c12f
BLAKE2b-256 dc156001f8feaee187feba373b0fa3a90e3d384a00d1a0fb25fc1336c008b109

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241111-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241111-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cd6983919fb26a736de094c8c144be8585bd46053775ffc228f0881992ef0363
MD5 2dbce2b57c84437de4f11cb2078f0524
BLAKE2b-256 6aa2f1a6ef1eed1f92ebe6af1140fe611f25277752ae18c0d19ca0f79fd96c7a

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241111-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241111-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 82c9acbc1fd202c05e87ae7b0d312b66567191a4a445d4f2ce626a71154f3cfc
MD5 1fd80424503c121c26dd09c2dddbaa3d
BLAKE2b-256 5ddef36eaced8235f771e264be4b0926f4d5fb758ac2778644ce82552bdb27bf

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241111-cp311-cp311-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241111-cp311-cp311-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 283537f6276164e70db67fc4237dc9692f615358dcac35552d9f2cb9bd6e9f91
MD5 adc01059fb36f8afd7ccdd6199b726b2
BLAKE2b-256 a6bc67a0b56ec3ca4b93bbfed7c2eb8aea88cf745dd7f5d6fa4fe709d3968c20

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241111-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241111-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 fc8752df6eceac7ad4e29e9175fda871642771b095645381cb4a483535e1c9d4
MD5 857ccb3b4c35549fdc67430eab9b18ec
BLAKE2b-256 cab422902c463c4ce499b1034f203a961cec7427021869992507e430c42bd8fb

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241111-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241111-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 4c40c32e1282e7b3a8515bdc604dfc74b5c24f1c8adcc26d8d2cbe84d86593b2
MD5 016682198ae89703aafb04a0e94f452d
BLAKE2b-256 82e6f6c3cb2345ff3c54e382d6c4203c99de68438f87e22b88c1412395677317

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241111-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241111-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 02c4d053257f8c4f0019c2efe7d5d8940ec960f6686bfef9b94cf49e77668cdc
MD5 89920299d047aab97e1cceec7c82cef7
BLAKE2b-256 cdb495f9b2e3537421ef7e46ba450364a746c900a9cd47e8996c560a58ca48b7

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241111-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241111-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0c072d1b825bc16082583a4687e1c788de708889a8bb7f30aef8a6882dbd808e
MD5 74da6329318d4138f1d456a3d94a9ad4
BLAKE2b-256 31b32d155d51aa02378bc2564c8ca12aef874b010e1fe58294721f9e6d4cfe12

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241111-cp310-cp310-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241111-cp310-cp310-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 cb0e1ef13ad93f79aa947cab29880e94ab2f68a1e7cebcd20d8bc9177e99f594
MD5 ac38b721c177fe1c6afbda59fac14243
BLAKE2b-256 ad9b64a4e5c5dd58687526cba95dfacc9d591219e570f8cb445af0e82417bbdf

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241111-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241111-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 dc0b33032dd2080fbb142374fab96736e74d7f0127f73394beb11cef83837288
MD5 b0fa1f6e90ab245da3bfba1d2ad35766
BLAKE2b-256 f97a608517fd1f3fc3e2ebc61440c9f673cab617312ea4c6453a227c9647a294

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241111-cp39-cp39-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241111-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 d6d3797c2c97095cdd000024312edfea9fdf6b7131cddcb4b3fe43da3a534bc9
MD5 88765c07b3672023e71f545231d685e6
BLAKE2b-256 e5ccaab5fd7ff96b4836c56448d13e5575a65802ab94164fe41ef520d151fd16

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241111-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241111-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1ab4b80497ea5d86ddfcb5e2b8839dc1eef04123f44fecf31917b1bd2566ebb8
MD5 4ea24bda5e66a6a055d9f0d412d348a4
BLAKE2b-256 e8199fe32de4c74d7d114ff1370586c4d8585892af8fab8a00c7a3d7f779c4b6

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241111-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241111-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4308e27c0e8a5a03b2d077b5e5a511f40152fcc97d57298f7a6dd6520338f036
MD5 a55f756626ac76e7af3fb9c18c8be77f
BLAKE2b-256 10a8fa11c3b7428fea05671e52feedca03b96fd41a5f0b0f12508b4f91d7b8c6

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241111-cp39-cp39-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241111-cp39-cp39-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 17ecac9badac1c7863f7b182b39eb3112a06740526e36b4f32955abbe7258092
MD5 a97c2fc188d33d3a7493f557b63ef465
BLAKE2b-256 b74538bdf4887f60c8895691b825c5eb4e4bb8ad73a811013c06a0ec13c810ee

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241111-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241111-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2c848c380dfe59067783e50e4d1356792aedbb469051f727d3f82e3e3ae5d5e3
MD5 7daef2212178336a4902c4d6543530a0
BLAKE2b-256 2750a4cf4ac8e688fe365c40a370082d4a3752e86db988c07b7df5ef757c545d

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241111-cp38-cp38-win32.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241111-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 7cd6852ffd907bb4f9d96f7e725039e0c6bb8b0ddb636c7760dcb804396d4af7
MD5 4764a64abe05e0f33b37afa4a821241d
BLAKE2b-256 f87cabbf2dc5e15848c982168b6b928048cfe4c071995e179cd0d0c4d77975b4

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241111-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241111-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d16ca0dea589f6efa888b9480a1b692c52a213785cdf8f1237e66931b1f750b4
MD5 616ea84d97acd5340b0a4acf07d5a37f
BLAKE2b-256 ba102d7d338de54958d6ffdcf92e22ec062c3eff3ded59f436ab98219f6db0eb

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241111-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241111-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 608afe6aeeb3d199f0fb073076011d05e2902d0c52f0bd27e18ef36c32540812
MD5 ae912c46bc25949e2b734be3ce01380f
BLAKE2b-256 cc6575cb6f922da9653c82ad786d1b7f83428a622b20ebdd95391af4afe9f297

See more details on using hashes here.

File details

Details for the file amd_onnx_weekly-1.18.0.dev20241111-cp38-cp38-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for amd_onnx_weekly-1.18.0.dev20241111-cp38-cp38-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 ab1a7e4ff4c5ffefc6438a15a421835fb61524e709ed2e7c25c578fae7c0d7ba
MD5 be76dae7f496afaf599b2250db0827a0
BLAKE2b-256 642c8df0947ad40043b8d3828a3fe2790011ef951da27e24a425b7432121108c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page