Skip to main content

A Machine Learning Library for the noobies

Project description

amey_ml

Overview

amey_ml is a versatile Python machine learning package providing a range of algorithms for different kinds of data processing and machine learning tasks. It includes implementations of popular algorithms such as Naive Bayes, Linear Regression, Neural Networks using Keras, Decision Trees, K-Nearest Neighbors, and K-Means Clustering. This package is designed to be user-friendly, efficient, and easily integrable into data analysis pipelines.

Installation

To install amey_ml, simply run the following command:

pip install amey_ml

Features

amey_ml includes the following modules and functions:

  1. Naive Bayes (naive_bayes.py)

    • output(training_file, test_file): Perform Naive Bayes classification.
  2. Linear Regression (linear_regression.py)

    • output(training_file, test_file, degree, lambda1): Perform regularized linear regression.
  3. Neural Networks with Keras (nn_keras.py)

    • output(directory, dataset, layers, units_per_layer, epochs): Train and evaluate neural network models.
  4. Decision Trees (decision_tree.py)

    • output(train_path, test_path, model_type, threshold): Train decision trees or random forests.
  5. K-Nearest Neighbors (knn_classify.py)

    • output(training_file, test_file, k): Implement K-nearest neighbors classification.
  6. K-Means Clustering (k_means.py)

    • output(data_file, K, initialization): Perform K-means clustering on a dataset.

Each function is designed to be straightforward to use, requiring only the necessary parameters for each specific algorithm.

Installing this package will install scikit-learn, tensorflow, pandas, scikit-learn, and keras by default.

Usage

To use amey_ml, first import the required function from the package and then call it with the necessary parameters. Here are some example usages:

from amey_ml import naive_bayes, linear_regression, nn_keras

from amey_ml import decision_tree, knn_classify, k_means



# Naive Bayes

naive_bayes.output('training_data.csv', 'test_data.csv')



# Linear Regression

linear_regression.output('train.csv', 'test.csv', 2, 0.01)



# Neural Networks using Keras

nn_keras.output('data_directory/', 'dataset_name', 3, 64, 10)



# Decision Trees

decision_tree.output('train_data.csv', 'test_data.csv', 'optimized', 0.05)



# K-Nearest Neighbors

knn_classify.output('train.csv', 'test.csv', 5)



# K-Means Clustering

k_means.output('data.csv', 3, 'random')

Documentation

Each function in the amey_ml package comes with detailed docstrings explaining the functionality,

parameters, and return types. For more detailed documentation, refer to the docstrings within each function.

Contributing

Contributions to amey_ml are welcome! If you'd like to contribute, please contact me at amey.shinde@bizzencecollab.com. Please fork the repository and use a

feature branch. Pull requests are warmly welcome.

Licensing

The code in this project is licensed under MIT license.

GitHub

https://github.com/Pistonamey/amey_ml/

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

amey_ml-0.1.10.tar.gz (14.5 kB view details)

Uploaded Source

Built Distribution

amey_ml-0.1.10-py3-none-any.whl (16.0 kB view details)

Uploaded Python 3

File details

Details for the file amey_ml-0.1.10.tar.gz.

File metadata

  • Download URL: amey_ml-0.1.10.tar.gz
  • Upload date:
  • Size: 14.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for amey_ml-0.1.10.tar.gz
Algorithm Hash digest
SHA256 577cadd5169136a90c221c4cb7c70bda4e9201b9f038d02d569f974c7489566e
MD5 736f24190400dbd42841e5712b81c77f
BLAKE2b-256 deb79153879bde0ce5d6a0d70bd2fd68feeb68e9f26c187340c252f86d4f711b

See more details on using hashes here.

File details

Details for the file amey_ml-0.1.10-py3-none-any.whl.

File metadata

  • Download URL: amey_ml-0.1.10-py3-none-any.whl
  • Upload date:
  • Size: 16.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for amey_ml-0.1.10-py3-none-any.whl
Algorithm Hash digest
SHA256 4a64d698c902ef53e93321ff421e8ae68f2b608580114643b415e697d4bfae1f
MD5 16433b30efb6e2d275bb73db69cb69e4
BLAKE2b-256 7807b446d591e4dfa67ec95762b8e24a61c9f1444f1aaefc2ad183dfc50e3427

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page