Efficient framework for building surrogates of multidisciplinary systems using the adaptive multi-index stochastic collocation (AMISC) technique.
Project description
Efficient framework for building surrogates of multidisciplinary systems using the adaptive multi-index stochastic collocation (AMISC) technique.
⚙️ Installation
pip install amisc
If you are using pdm in your own project, then you can use:
pdm add amisc
# Or in editable mode from a local clone...
pdm add -e ./amisc --dev
📍 Quickstart
import numpy as np
from amisc.system import SystemSurrogate, ComponentSpec
from amisc.rv import UniformRV
def fun1(x):
return dict(y=x * np.sin(np.pi * x))
def fun2(x):
return dict(y=1 / (1 + 25 * x ** 2))
x = UniformRV(0, 1, 'x')
y = UniformRV(0, 1, 'y')
z = UniformRV(0, 1, 'z')
model1 = ComponentSpec(fun1, exo_in=x, coupling_out=y)
model2 = ComponentSpec(fun2, coupling_in=y, coupling_out=z)
inputs = x
outputs = [y, z]
system = SystemSurrogate([model1, model2], inputs, outputs)
system.fit()
x_test = system.sample_inputs(10)
y_test = system.predict(x_test)
🏗️ Contributing
See the contribution guidelines.
📖 Reference
AMISC paper [1].
Made with the copier-numpy template.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
amisc-0.4.0.tar.gz
(74.4 kB
view details)
Built Distribution
amisc-0.4.0-py3-none-any.whl
(68.1 kB
view details)
File details
Details for the file amisc-0.4.0.tar.gz
.
File metadata
- Download URL: amisc-0.4.0.tar.gz
- Upload date:
- Size: 74.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.0 CPython/3.12.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fde89a3a6670fca9093c5ac47c17b3340c0c3518a9de5a57bbab619c8c7d8a67 |
|
MD5 | 0b039e798792045c2034f5dfa9215a6f |
|
BLAKE2b-256 | 17b9cb79516dfbfb487c0264d0b9cd65152ef93b54e77415e081c4bd77418f4a |
File details
Details for the file amisc-0.4.0-py3-none-any.whl
.
File metadata
- Download URL: amisc-0.4.0-py3-none-any.whl
- Upload date:
- Size: 68.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.0 CPython/3.12.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 252c224069d472146b597f1fdfb7af31296b0975dd8c0a68dea440ee41d5b231 |
|
MD5 | 1efb311c3cea105df3dd75c839a2a678 |
|
BLAKE2b-256 | 24373a0031b188aa92d8527887bcf53cdac77d7c3487ba1b80841b0af9cebdf5 |