Skip to main content

Analiticcl is an approximate string matching or fuzzy-matching system that can be used to find variants for spelling correction or text normalisation

Project description

Analiticcl

Introduction

Analiticcl is an approximate string matching or fuzzy-matching system that can be used for spelling correction or text normalisation (such as post-OCR correction or post-HTR correction). Texts can be checked against a validated or corpus-derived lexicon (with or without frequency information) and spelling variants will be returned.

Please see the main README.md for a further introduction, it also links to a Python tutorial.

Analiticcl is written in Rust, this is the Python binding, allowing you to use analiticcl from Python as a module.

Installation

with pip

pip install analiticcl

from source

To use this method, you need to have Rust installed and in your $PATH. Install it through your package manager or through rustup:

curl https://sh.rustup.rs -sSf | sh -s -- -y
export PATH="$HOME/.cargo/bin:$PATH"

Once Rust is installed, you can compile the analiticcl binding:

# Create a virtual env (you can use yours as well)
python -m venv .env
source .env/bin/activate

# Install `analiticcl` in the current virtual env
pip install setuptools_rust
python setup.py install

Usage

from analiticcl import VariantModel, Weights, SearchParameters
import json

model = VariantModel("examples/simple.alphabet.tsv", Weights(), debug=False)
model.read_lexicon("examples/eng.aspell.lexicon")
model.build()
result = model.find_variants("udnerstand", SearchParameters(max_edit_distance=3))
print(json.dumps(result, ensure_ascii=False, indent=4))
print()
results = model.find_all_matches("I do not udnerstand the probleem", SearchParameters(max_edit_distance=3,max_ngram=1))
print(json.dumps(results, ensure_ascii=False, indent=4))

Note: all offsets reported by analiticcl are utf-8 byte-offsets, not character offsets! If you want proper unicode character offsets, pass the keyword argument unicodeoffset=True to SearchParameters. You will want to set this if you intend to do any kind of slicing in Python (which uses unicode points by default).

Output:

[
    {
        "text": "understand",
        "score": 0.8978494623655915,
        "lexicon": "../../../examples/eng.aspell.lexicon"
    },
    {
        "text": "understands",
        "score": 0.6725317693059629,
        "lexicon": "../../../examples/eng.aspell.lexicon"
    },
    {
        "text": "understood",
        "score": 0.6036866359447004,
        "lexicon": "../../../examples/eng.aspell.lexicon"
    },
    {
        "text": "understate",
        "score": 0.5967741935483871,
        "lexicon": "../../../examples/eng.aspell.lexicon"
    }
]
[
    {
        "input": "I",
        "offset": {
            "begin": 0,
            "end": 1
        },
        "variants": [
            {
                "text": "I",
                "score": 0.8387096774193549,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "i",
                "score": 0.8064516129032258,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            }
        ]
    },
    {
        "input": "do",
        "offset": {
            "begin": 2,
            "end": 4
        },
        "variants": [
            {
                "text": "do",
                "score": 1.0,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "dog",
                "score": 0.6236559139784946,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "doc",
                "score": 0.6236559139784946,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "doz",
                "score": 0.6236559139784946,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "dob",
                "score": 0.6236559139784946,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "doe",
                "score": 0.6236559139784946,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "dot",
                "score": 0.6236559139784946,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "dos",
                "score": 0.6236559139784946,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "ado",
                "score": 0.6236559139784946,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "don",
                "score": 0.6236559139784946,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "d",
                "score": 0.5967741935483871,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "o",
                "score": 0.5967741935483871,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "DOD",
                "score": 0.5913978494623655,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            }
        ]
    },
    {
        "input": "not",
        "offset": {
            "begin": 5,
            "end": 8
        },
        "variants": [
            {
                "text": "not",
                "score": 1.0,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "knot",
                "score": 0.6370967741935484,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "note",
                "score": 0.6370967741935484,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "snot",
                "score": 0.6370967741935484,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "no",
                "score": 0.6236559139784946,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "nowt",
                "score": 0.5967741935483871,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "No",
                "score": 0.5913978494623655,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "OT",
                "score": 0.5913978494623655,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "pot",
                "score": 0.5698924731182795,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            }
        ]
    },
    {
        "input": "udnerstand",
        "offset": {
            "begin": 9,
            "end": 19
        },
        "variants": [
            {
                "text": "understand",
                "score": 0.8978494623655915,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "understands",
                "score": 0.6725317693059629,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "understood",
                "score": 0.6036866359447004,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "understate",
                "score": 0.5967741935483871,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            }
        ]
    },
    {
        "input": "the",
        "offset": {
            "begin": 20,
            "end": 23
        },
        "variants": [
            {
                "text": "the",
                "score": 1.0,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "thee",
                "score": 0.6908602150537635,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "thew",
                "score": 0.6370967741935484,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "then",
                "score": 0.6370967741935484,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "them",
                "score": 0.6370967741935484,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "they",
                "score": 0.6370967741935484,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "he",
                "score": 0.6236559139784946,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "Thea",
                "score": 0.6048387096774194,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "Th",
                "score": 0.5913978494623655,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "He",
                "score": 0.5913978494623655,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "thy",
                "score": 0.5698924731182795,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "she",
                "score": 0.5698924731182795,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "tho",
                "score": 0.5698924731182795,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "Thu",
                "score": 0.5376344086021505,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "Che",
                "score": 0.5376344086021505,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "THC",
                "score": 0.5376344086021505,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "tee",
                "score": 0.5161290322580645,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "toe",
                "score": 0.5161290322580645,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "tie",
                "score": 0.5161290322580645,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "Te",
                "score": 0.510752688172043,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            }
        ]
    },
    {
        "input": "probleem",
        "offset": {
            "begin": 24,
            "end": 32
        },
        "variants": [
            {
                "text": "problem",
                "score": 0.9231950844854071,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "problems",
                "score": 0.6908602150537635,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "probe",
                "score": 0.5913978494623656,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "proclaim",
                "score": 0.5766129032258065,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "probated",
                "score": 0.543010752688172,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "probates",
                "score": 0.543010752688172,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "prole",
                "score": 0.5322580645161291,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "prowlers",
                "score": 0.4959677419354839,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            },
            {
                "text": "parolees",
                "score": 0.44220430107526887,
                "lexicon": "../../../examples/eng.aspell.lexicon"
            }
        ]
    }
]

Documentation

The python binding exposes only a minimal interface, you can use Python's help() function to get information on the classes provided. For more detailed information, please consult the Analiticcl's rust API documentation. The interfaces that are available in the binding are analogous to the rust versions.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

analiticcl-0.4.8.tar.gz (15.3 kB view details)

Uploaded Source

Built Distributions

analiticcl-0.4.8-cp313-cp313-musllinux_1_2_x86_64.whl (846.1 kB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

analiticcl-0.4.8-cp313-cp313-musllinux_1_2_aarch64.whl (856.0 kB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ ARM64

analiticcl-0.4.8-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (685.5 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

analiticcl-0.4.8-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (670.9 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

analiticcl-0.4.8-cp313-cp313-macosx_11_0_arm64.whl (602.2 kB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

analiticcl-0.4.8-cp313-cp313-macosx_10_12_x86_64.whl (620.1 kB view details)

Uploaded CPython 3.13 macOS 10.12+ x86-64

analiticcl-0.4.8-cp312-none-win_amd64.whl (484.6 kB view details)

Uploaded CPython 3.12 Windows x86-64

analiticcl-0.4.8-cp312-none-win32.whl (452.5 kB view details)

Uploaded CPython 3.12 Windows x86

analiticcl-0.4.8-cp312-cp312-musllinux_1_2_x86_64.whl (846.3 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

analiticcl-0.4.8-cp312-cp312-musllinux_1_2_aarch64.whl (856.4 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

analiticcl-0.4.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (686.2 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

analiticcl-0.4.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (671.7 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

analiticcl-0.4.8-cp312-cp312-macosx_11_0_arm64.whl (602.9 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

analiticcl-0.4.8-cp312-cp312-macosx_10_12_x86_64.whl (620.6 kB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

analiticcl-0.4.8-cp311-none-win_amd64.whl (482.4 kB view details)

Uploaded CPython 3.11 Windows x86-64

analiticcl-0.4.8-cp311-none-win32.whl (451.0 kB view details)

Uploaded CPython 3.11 Windows x86

analiticcl-0.4.8-cp311-cp311-musllinux_1_2_x86_64.whl (845.5 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

analiticcl-0.4.8-cp311-cp311-musllinux_1_2_aarch64.whl (855.4 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

analiticcl-0.4.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (684.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

analiticcl-0.4.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (669.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

analiticcl-0.4.8-cp311-cp311-macosx_11_0_arm64.whl (602.1 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

analiticcl-0.4.8-cp311-cp311-macosx_10_12_x86_64.whl (620.4 kB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

analiticcl-0.4.8-cp310-none-win_amd64.whl (482.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

analiticcl-0.4.8-cp310-none-win32.whl (450.8 kB view details)

Uploaded CPython 3.10 Windows x86

analiticcl-0.4.8-cp310-cp310-musllinux_1_2_x86_64.whl (845.5 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

analiticcl-0.4.8-cp310-cp310-musllinux_1_2_aarch64.whl (855.5 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

analiticcl-0.4.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (684.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

analiticcl-0.4.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (670.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

analiticcl-0.4.8-cp310-cp310-macosx_11_0_arm64.whl (602.2 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

analiticcl-0.4.8-cp310-cp310-macosx_10_12_x86_64.whl (620.3 kB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

analiticcl-0.4.8-cp39-none-win_amd64.whl (482.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

analiticcl-0.4.8-cp39-none-win32.whl (451.5 kB view details)

Uploaded CPython 3.9 Windows x86

analiticcl-0.4.8-cp39-cp39-musllinux_1_2_x86_64.whl (846.5 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

analiticcl-0.4.8-cp39-cp39-musllinux_1_2_aarch64.whl (856.2 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

analiticcl-0.4.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (685.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

analiticcl-0.4.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (671.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

analiticcl-0.4.8-cp38-none-win_amd64.whl (482.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

analiticcl-0.4.8-cp38-none-win32.whl (451.1 kB view details)

Uploaded CPython 3.8 Windows x86

analiticcl-0.4.8-cp38-cp38-musllinux_1_2_x86_64.whl (845.8 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

analiticcl-0.4.8-cp38-cp38-musllinux_1_2_aarch64.whl (856.0 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARM64

analiticcl-0.4.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (684.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

analiticcl-0.4.8-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (670.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

analiticcl-0.4.8-cp37-none-win_amd64.whl (482.7 kB view details)

Uploaded CPython 3.7 Windows x86-64

analiticcl-0.4.8-cp37-none-win32.whl (451.0 kB view details)

Uploaded CPython 3.7 Windows x86

File details

Details for the file analiticcl-0.4.8.tar.gz.

File metadata

  • Download URL: analiticcl-0.4.8.tar.gz
  • Upload date:
  • Size: 15.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.1.dev0+g94f810c.d20240510 CPython/3.12.7

File hashes

Hashes for analiticcl-0.4.8.tar.gz
Algorithm Hash digest
SHA256 2d3ba8402c901d222b1eb0cd808c4bbb99524584c6c98ccdf08cdc49ce266a10
MD5 f81c88e8de062070d2257b33ba4e0fe0
BLAKE2b-256 09175586806d0534baee9a54509388638dfa5f97298e5432fd0f22fe32ca1d02

See more details on using hashes here.

File details

Details for the file analiticcl-0.4.8-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for analiticcl-0.4.8-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 e33267a9bc046b5586fbed152c06bfba40785ce9fde95453795946b8e646596b
MD5 a375216ead0344b4c27434ff3f135966
BLAKE2b-256 ba16327eae4496619442b9d0ac85a26d786c191f12dc46351b42d2f95626439d

See more details on using hashes here.

File details

Details for the file analiticcl-0.4.8-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for analiticcl-0.4.8-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 5a1a3c7f38287004c1a7b544c2ba6148f04369738bd5c08a1415c50b37639e5a
MD5 5e596d79042827b279f6632a20f9c0fd
BLAKE2b-256 4e248199fac121401584a21e26373ced3306850a930341cf41bbf7b3fe5eb8f7

See more details on using hashes here.

File details

Details for the file analiticcl-0.4.8-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for analiticcl-0.4.8-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 02c380e8aae03801aeb0252b9dec727cf20dece2fa39d6ac4f0d21008e08dc64
MD5 c3b93c81afcec95f1577e5c644c799bb
BLAKE2b-256 f06e53eb598b55c99fecb3072d24ab110b13d81c1aecec79788965e4af2062d5

See more details on using hashes here.

File details

Details for the file analiticcl-0.4.8-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for analiticcl-0.4.8-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fccc1c585b5011df8ce71c05f0d0c571e6bba96ce6e63f64af724ac1ca0c7d74
MD5 b4918a152afe66ba9b3435307bede947
BLAKE2b-256 20bbcf6eb48d73b8680de2c95868890ea9519c9849fee4248b2daf9835f1ff0f

See more details on using hashes here.

File details

Details for the file analiticcl-0.4.8-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for analiticcl-0.4.8-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1187c06ef1c0fa20084b7cd182bfd3ed8260b1816eec5fe23b34c3cab54174fb
MD5 3e044fafa3d403293b02b0290b6c6842
BLAKE2b-256 0362ef7e055aae59ecc2c91ed62b437fd024079644e888147a07e0422728352b

See more details on using hashes here.

File details

Details for the file analiticcl-0.4.8-cp313-cp313-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for analiticcl-0.4.8-cp313-cp313-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 1a9cc54b60f53788f2337aa5ebda4a9f6c8a5fd2b6bf31248c7e3b7e065f8927
MD5 62329f07bdcc17acbf15a3d20e32da18
BLAKE2b-256 11a15307f13093e69c1f4f4a6e5e48014ba0cbbe2c7bec1c09ddaeef6486a4a8

See more details on using hashes here.

File details

Details for the file analiticcl-0.4.8-cp312-none-win_amd64.whl.

File metadata

  • Download URL: analiticcl-0.4.8-cp312-none-win_amd64.whl
  • Upload date:
  • Size: 484.6 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.1.dev0+g94f810c.d20240510 CPython/3.12.7

File hashes

Hashes for analiticcl-0.4.8-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 f8341819bd60640be1131efa2855cff6ed6db942be143d54f6ee5e5f42b4f1d7
MD5 72a42bd74e686976da4d3e8f07303d98
BLAKE2b-256 e2b1c2b16aa6fc196c8d65a77c6742db8a807af9d94efed0dab3dacb0ffc9c5e

See more details on using hashes here.

File details

Details for the file analiticcl-0.4.8-cp312-none-win32.whl.

File metadata

  • Download URL: analiticcl-0.4.8-cp312-none-win32.whl
  • Upload date:
  • Size: 452.5 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.1.dev0+g94f810c.d20240510 CPython/3.12.7

File hashes

Hashes for analiticcl-0.4.8-cp312-none-win32.whl
Algorithm Hash digest
SHA256 256b03bff2228fbbad9b6840350c005201ef250755f2b5baf43367d0c149e519
MD5 a28a8492a0ce853b5faa6e11d5d3513c
BLAKE2b-256 41ae44d974473d8211a8ff8e564c7b2f98f891c92d6c238fd59521286bb0b3b3

See more details on using hashes here.

File details

Details for the file analiticcl-0.4.8-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for analiticcl-0.4.8-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 8e1a15dbbdf79ac97238f7c3a4d08a8129474eef7b3b19f796e8182e488271a7
MD5 60c46b13f81493b54c80ae94536e0454
BLAKE2b-256 d557631eb367beb7f32fd93a1515e94874b867dc33d7cb654f8246db293d4c64

See more details on using hashes here.

File details

Details for the file analiticcl-0.4.8-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for analiticcl-0.4.8-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 3a8c539602d66caae4652322208619d64cf870fcf66a4045b54341f0562c6d65
MD5 18f42ad880d18c4593fd9dd8d5d30069
BLAKE2b-256 048e2e3714532464cfcf27743d142f51f2e15549ed5179dd4930b3a2d6d497f6

See more details on using hashes here.

File details

Details for the file analiticcl-0.4.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for analiticcl-0.4.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 747cdf3d55193572fc65ba2028c87412a49b50a1b50d61886273f2aa31ddc0cf
MD5 178e5b81f2ca0befd4f5ae06250d9ca1
BLAKE2b-256 22145b338c60e8d8985387e90b7d2349054316cb14302355edea3e2b3f45faea

See more details on using hashes here.

File details

Details for the file analiticcl-0.4.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for analiticcl-0.4.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7166c5f87e858e539f84cef432b1798a429b6ab5e3df543c6d4f8b45f0bd6a67
MD5 3a79f4aa1d83025bf9df9bde1c244375
BLAKE2b-256 175474c7c62adebf440a3c3c9d5867d2a5c9330478eb9c37d9f71812aa035a35

See more details on using hashes here.

File details

Details for the file analiticcl-0.4.8-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for analiticcl-0.4.8-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8c33a7cf3c4c05fd458efd3675bff42b854fff3b2f8f85be1c46cc9c11661b79
MD5 135bf5e9e1c4b8f1608139d034c1f764
BLAKE2b-256 a6fcf90bcdfa00a741d825cae94f3a672b053ab15c088f22ad4ce5738280ac23

See more details on using hashes here.

File details

Details for the file analiticcl-0.4.8-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for analiticcl-0.4.8-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 277c5639797aad9fa97ea99264878dbc7653b44c8fbf981431156afc6a893251
MD5 5c096760f598b30e8b7ce913817914ba
BLAKE2b-256 ecad127f16d8d4403346142f7b6654fbc817803b7fd4f211514124ae4e43e2c5

See more details on using hashes here.

File details

Details for the file analiticcl-0.4.8-cp311-none-win_amd64.whl.

File metadata

  • Download URL: analiticcl-0.4.8-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 482.4 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.1.dev0+g94f810c.d20240510 CPython/3.12.7

File hashes

Hashes for analiticcl-0.4.8-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 4d8eca1e6894f0945d774b2a6c89ad194fce3c903c0b436a80f0a9275de5c251
MD5 07693e65a643f5395c00c09ac639a8e6
BLAKE2b-256 97c78ec7fd6339e712ba1d73205f1318a82e1533c3d42100dbe044322d8c07a4

See more details on using hashes here.

File details

Details for the file analiticcl-0.4.8-cp311-none-win32.whl.

File metadata

  • Download URL: analiticcl-0.4.8-cp311-none-win32.whl
  • Upload date:
  • Size: 451.0 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.1.dev0+g94f810c.d20240510 CPython/3.12.7

File hashes

Hashes for analiticcl-0.4.8-cp311-none-win32.whl
Algorithm Hash digest
SHA256 24d8500c9ee05aecc7475fb30993fce5f184ebc3a004982ae8d2332ea04aef8e
MD5 e4bc85129b9425c477f641eab64d848d
BLAKE2b-256 c5c1ce73e655a9a10a27591fa12a0907c669d3463621deef7c4e12457da68989

See more details on using hashes here.

File details

Details for the file analiticcl-0.4.8-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for analiticcl-0.4.8-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 74777125510090c035bcc45474e2bc22c2783ba5d74804c54641e06a0ea3411b
MD5 99bd1aa85a35e4cc57f0a1230cd6f39f
BLAKE2b-256 be738f3f763ca9119e4637cd96e8c6acfd2ff94f6b694a26f443fc0e7ad56ed7

See more details on using hashes here.

File details

Details for the file analiticcl-0.4.8-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for analiticcl-0.4.8-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 5433e6060db0743de5a46abb13d59dbd4361b2a4c85e0293bc5d06a42a6abd30
MD5 6958ee45c1539fb21f3c929cc31ee419
BLAKE2b-256 8b8747443e0e8fbb723407fb4d4205cdf1b4b8b36473d9ec036c3069f26eac55

See more details on using hashes here.

File details

Details for the file analiticcl-0.4.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for analiticcl-0.4.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 65e0723d9594e3470afee8c250f7a41d0ed0c521592bb321b293b5d038a741e2
MD5 a9f0368176ace9bd657cf63d72305ae2
BLAKE2b-256 76f2003a0b3102427f3d355dac316cbc87122baf24ff6a91635eb1e56cbc39ca

See more details on using hashes here.

File details

Details for the file analiticcl-0.4.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for analiticcl-0.4.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fcd2eb2c2816c74b4a15242e133998a763a1169d12b9965ebb631dce08729135
MD5 51212453ad2926728de57e19032b74c1
BLAKE2b-256 a38b6e99ed9f987ddbcb7187e715adbff5d7bfac5127019a7d62793ccb1131f5

See more details on using hashes here.

File details

Details for the file analiticcl-0.4.8-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for analiticcl-0.4.8-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0bf75b9bbbb5a8db6851168fd6e4a5bf8f56e34aab01b80f87eeeae3e6489a72
MD5 9da7c6f849222be3ed37504a2a437f5e
BLAKE2b-256 83bbf30987569503197a99ca06f15e7f236aad95363c952abf3077b50f2a2dbd

See more details on using hashes here.

File details

Details for the file analiticcl-0.4.8-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for analiticcl-0.4.8-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 62b665431f46ceeb0126d3688c04ded50ef74b1a77710bc15bfe99236f1f151d
MD5 61f77f8fe299081348715e7c1270fc11
BLAKE2b-256 0465a0af7288768b7ebd00f44de5274e15975ff2e1fd7bc73bfb21bbb9fccbcf

See more details on using hashes here.

File details

Details for the file analiticcl-0.4.8-cp310-none-win_amd64.whl.

File metadata

  • Download URL: analiticcl-0.4.8-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 482.2 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.1.dev0+g94f810c.d20240510 CPython/3.12.7

File hashes

Hashes for analiticcl-0.4.8-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 031ce64f0f71749287eb52165a4669dcb599ec46fb86eae1d6c767e8bca4c6f5
MD5 24debb2e2131413f096b365fa8e38abb
BLAKE2b-256 36d8c501bb4fed13b81527a9e1526eec525ae456571aa483f185c548925aa160

See more details on using hashes here.

File details

Details for the file analiticcl-0.4.8-cp310-none-win32.whl.

File metadata

  • Download URL: analiticcl-0.4.8-cp310-none-win32.whl
  • Upload date:
  • Size: 450.8 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.1.dev0+g94f810c.d20240510 CPython/3.12.7

File hashes

Hashes for analiticcl-0.4.8-cp310-none-win32.whl
Algorithm Hash digest
SHA256 d0afaa04b1d9c3b29047cbedd9433faef7b2645b64222c83062c468dd5fc7001
MD5 ecb27354ad4bd7229dd6794c5aaebaf8
BLAKE2b-256 7009c424df303480dc67a52c0a476c3888579f02af3b0a0c57d1fe187fe6158d

See more details on using hashes here.

File details

Details for the file analiticcl-0.4.8-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for analiticcl-0.4.8-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 8ae6ecddd3582175e7223a6d0ba5ea28d9d76298d7fae0e0cab19a253e85d057
MD5 b6d295ec501f81d5b879db97393f6bde
BLAKE2b-256 4db8f6b613936bd5ae5456a1015c651002d31f68dc1f6c71a01bf79849f7843a

See more details on using hashes here.

File details

Details for the file analiticcl-0.4.8-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for analiticcl-0.4.8-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 0fd90686cb123ac5425a2c597d3005a5f377d3fb726d8f04fc5f9f22499a892c
MD5 abd01d36858457fb8bd89220da47b829
BLAKE2b-256 cf06ab70db79884621bad4f4df6e2ba1a443c5bd427501caa968f716bc9273c9

See more details on using hashes here.

File details

Details for the file analiticcl-0.4.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for analiticcl-0.4.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1dc1444e6085f0086167487137708180857d5bebc2d390e55f5ce3b7f2a5e843
MD5 5ca95cc40a30605bb7322850f83d22bd
BLAKE2b-256 f6fe28bb96c3d0de6765ca171440ff6d97b5ac4f74f59edc29da3bf1985ad1f3

See more details on using hashes here.

File details

Details for the file analiticcl-0.4.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for analiticcl-0.4.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9e928d69318186493930f45d736b7976d8c295fee7f169845725bf63559d8616
MD5 30a276f21247da33f5f408a0dfc61d9c
BLAKE2b-256 51b91f047a2726a4b4e8b53d69e33284379e29ef0820719c052b14d8ed2686a6

See more details on using hashes here.

File details

Details for the file analiticcl-0.4.8-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for analiticcl-0.4.8-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a5dc1c232a862712828f78a0ce7ae462cba2bd2f3410259ac1a29675db62da56
MD5 14a498469cbd9d7d5dfd921cab5eb8f6
BLAKE2b-256 11982b36787f78b0d1b2049b0eefe47b92864a6f1eafc473a5e827b8420abca2

See more details on using hashes here.

File details

Details for the file analiticcl-0.4.8-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for analiticcl-0.4.8-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 ee0e02e2af80866ca9cc8c372d36cbb015408321204ea430e1384975ca8bc43c
MD5 e197ecb6450e3b12e14c47b3857be78f
BLAKE2b-256 51be74ed4533cbdb45e8f4c5008c7b68e385595acddf7dd8b8013900363045f5

See more details on using hashes here.

File details

Details for the file analiticcl-0.4.8-cp39-none-win_amd64.whl.

File metadata

  • Download URL: analiticcl-0.4.8-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 482.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.1.dev0+g94f810c.d20240510 CPython/3.12.7

File hashes

Hashes for analiticcl-0.4.8-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 7ca783d84afa22295a25ddae6b3729721d5b080550cec25e3de922d3db874b0e
MD5 7edb6835677be03ffd960fa32ff405e7
BLAKE2b-256 1e558a19669c4f87590d8eb06dd52dd349e54e0bef5f1b46bccc3a5703af0ca9

See more details on using hashes here.

File details

Details for the file analiticcl-0.4.8-cp39-none-win32.whl.

File metadata

  • Download URL: analiticcl-0.4.8-cp39-none-win32.whl
  • Upload date:
  • Size: 451.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.1.dev0+g94f810c.d20240510 CPython/3.12.7

File hashes

Hashes for analiticcl-0.4.8-cp39-none-win32.whl
Algorithm Hash digest
SHA256 c99f6b631730cd1fe749f2e1acbab2915da01c63a39271784dcd4f0a7ee812bc
MD5 54a4a81162d06f938b6d11f1b44c0576
BLAKE2b-256 3a714b025b4d24fdd7c03abaf968d9dd604d61d942790d53eb2e9fe458caf791

See more details on using hashes here.

File details

Details for the file analiticcl-0.4.8-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for analiticcl-0.4.8-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 945e12498499c62ece9d86dc572208ad911dff3a0ac9bb2701a55052629ec2a0
MD5 b863a6f31b2544d1dbd90e35599c0a49
BLAKE2b-256 a8b77367a41e783ef7488c4ca503ac946ca7604eb5f533164c4499bf6091de29

See more details on using hashes here.

File details

Details for the file analiticcl-0.4.8-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for analiticcl-0.4.8-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 c362b137a46c9387f692e0ee41e10b93febbe0547c5cfd0ba913f3fab4cea7a7
MD5 c93168f1b6577c7f2b72f913e8059e74
BLAKE2b-256 7ee08e5d7dadf5159707b6e162499c92bf5d5e54933beefbb1fc00ce5e8542ce

See more details on using hashes here.

File details

Details for the file analiticcl-0.4.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for analiticcl-0.4.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0b75de2a157b5b9e01e40a02be8ddb5b989fca282ea6ea27b3f56f759051df3a
MD5 cc216b7a9aa4875a6208e1f23f98e706
BLAKE2b-256 78d25a1c5ec5f78ba52c5803f40a81220722454a5cda67cba49c0e7b68974dbf

See more details on using hashes here.

File details

Details for the file analiticcl-0.4.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for analiticcl-0.4.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 da767eea8bf9eb9eba221e9a11c8bb4a3f5adf2fc625aabe6be67127227b21a5
MD5 62f9075949b73e055cb3d20cf7e572e0
BLAKE2b-256 6cd3aaa99e48202af54fade661e296645ca240925ebc85756cfa1a42048934cd

See more details on using hashes here.

File details

Details for the file analiticcl-0.4.8-cp38-none-win_amd64.whl.

File metadata

  • Download URL: analiticcl-0.4.8-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 482.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.1.dev0+g94f810c.d20240510 CPython/3.12.7

File hashes

Hashes for analiticcl-0.4.8-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 9a82ef18c2d943e60c3bc0b2ab458f62a30fad32e560e29f753caf020706cb39
MD5 60b732cf66c13a7184dc7f4702128812
BLAKE2b-256 dcc6147d904f094a259d2f7e1199f8881ad57b10498674f1ab37bbd9e4c09972

See more details on using hashes here.

File details

Details for the file analiticcl-0.4.8-cp38-none-win32.whl.

File metadata

  • Download URL: analiticcl-0.4.8-cp38-none-win32.whl
  • Upload date:
  • Size: 451.1 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.1.dev0+g94f810c.d20240510 CPython/3.12.7

File hashes

Hashes for analiticcl-0.4.8-cp38-none-win32.whl
Algorithm Hash digest
SHA256 645471f1c4c8d8b772a5b5dd48e46b7b4657dc4c27ee5eea125b47272459b188
MD5 8adfb1dfc863fd4c64e34ece1670ba07
BLAKE2b-256 5ed3e4616b7dd68c921d0e839c597314ab591db7da3b38053e951553c44e9f10

See more details on using hashes here.

File details

Details for the file analiticcl-0.4.8-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for analiticcl-0.4.8-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 198ee0c551db73fbd375858d4d5e3fa86bd89ed9097be58f31d341da31059771
MD5 54b69ba45e75dad2281ccd3d6c45cae4
BLAKE2b-256 748191948fa6fc0941e1d5f802aa25f17584f50ae9a785cb9a2bb8982ecaa255

See more details on using hashes here.

File details

Details for the file analiticcl-0.4.8-cp38-cp38-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for analiticcl-0.4.8-cp38-cp38-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 01eaf75401da35b0525681e1acc72aeb0b5cbb14de693ae1f4a5d3c7fbec110b
MD5 a26958fb2c84ca7416c7bec62d1f7504
BLAKE2b-256 a96ad1166a4b339a1b6527164664e03eaf91ded028364c88c5c5365c71ec6e02

See more details on using hashes here.

File details

Details for the file analiticcl-0.4.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for analiticcl-0.4.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e516a84934d7e280415c3a24d151df1597e897eabed7a888a2a01f59775c8384
MD5 b443c46eb87ffe319c2e671f2544ed33
BLAKE2b-256 e8fd1bab22819f1c80e8f3baef35ce3af0e247472508b6db9fc71cf346fc5419

See more details on using hashes here.

File details

Details for the file analiticcl-0.4.8-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for analiticcl-0.4.8-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8a990b9e4a5f1bb5fbb1c8a42d53223df216b98c52c6162e68f60a357c0a074b
MD5 ed60a43b5a85860213a19d1f8c355570
BLAKE2b-256 7c1c5a994864e1cf3540fe6bf92a2f7ffca7100ccf2267b41bf996429cd792c1

See more details on using hashes here.

File details

Details for the file analiticcl-0.4.8-cp37-none-win_amd64.whl.

File metadata

  • Download URL: analiticcl-0.4.8-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 482.7 kB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.1.dev0+g94f810c.d20240510 CPython/3.12.7

File hashes

Hashes for analiticcl-0.4.8-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 3ee35405dbaf9d51c8a403b1b14b9fdac67154e2ff59d32517a66dc39ac8dd4a
MD5 53f556b996b076e5aaeffb617fd1e589
BLAKE2b-256 5799045460bcebf770f55e0ae644734116124489e34fcd537b2498491f3d29ae

See more details on using hashes here.

File details

Details for the file analiticcl-0.4.8-cp37-none-win32.whl.

File metadata

  • Download URL: analiticcl-0.4.8-cp37-none-win32.whl
  • Upload date:
  • Size: 451.0 kB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.1.dev0+g94f810c.d20240510 CPython/3.12.7

File hashes

Hashes for analiticcl-0.4.8-cp37-none-win32.whl
Algorithm Hash digest
SHA256 73c9640fdda0376f2f2f9334ae8e35fd5f358813e549c38c266bbf2d4d45a236
MD5 503fcc2d6931ea9a526dc247ce46732a
BLAKE2b-256 dd186dd236dbd88c9f50520b5fc4ad47c7c1a90f4f2b02a2d9e5ff674d53e4a3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page