Analysis tools for Machine learning projects
Project description
Analysis tools for machine learning projects
1. Usage
$ pip install analysis-tools
2. Tutorial
examples/titanic/eda.ipynb를 참고
from analysis_tools import eda, metrics
data = pd.DataFrame(..)
target = 'survived'
num_features = ['age', 'sibsp', 'parch', 'fare']
cat_features = data.columns.drop(num_features)
data[num_features] = data[num_features].astype('float32')
data[cat_features] = data[cat_features].astype('string')
eda.plot_missing_value(data)
eda.plot_features(data)
eda.plot_features_target(data, target)
eda.plot_corr(data.corr())
metrics.get_feature_importance(data, target)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
analysis_tools-0.3.2.tar.gz
(15.0 kB
view details)
Built Distribution
File details
Details for the file analysis_tools-0.3.2.tar.gz
.
File metadata
- Download URL: analysis_tools-0.3.2.tar.gz
- Upload date:
- Size: 15.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.5.1 CPython/3.10.6 Linux/5.15.90.1-microsoft-standard-WSL2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d57b572f82bc8666c006344bb37ebf2f870a59861833b9afaf5494af15fbd95c |
|
MD5 | e1fa5a7c69c5dab75ed094255d2e1184 |
|
BLAKE2b-256 | 4cd3af14eb3f58574c8e9a10c0fabc10f7c826842f56260caca3ccdacf5626bc |
File details
Details for the file analysis_tools-0.3.2-py3-none-any.whl
.
File metadata
- Download URL: analysis_tools-0.3.2-py3-none-any.whl
- Upload date:
- Size: 19.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.5.1 CPython/3.10.6 Linux/5.15.90.1-microsoft-standard-WSL2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0cc8911a1005af2d26a95f214dc676c47aff2f4e9abfc94402234fc7106a0640 |
|
MD5 | 453892fa12043d15a20e610f4f7e5cc5 |
|
BLAKE2b-256 | 3f43a33aea79519f784fc3fed2b782aad574204ab07cb1128f39b087cafad919 |