Analysis tools for Machine learning projects
Project description
Analysis tools for machine learning projects
1. Usage
$ pip install analysis-tools
2. Tutorial
examples/titanic/eda.ipynb를 참고
from analysis_tools import eda, metrics
data = pd.DataFrame(..)
target = 'survived'
num_features = ['age', 'sibsp', 'parch', 'fare']
cat_features = data.columns.drop(num_features)
data[num_features] = data[num_features].astype('float32')
data[cat_features] = data[cat_features].astype('string')
eda.plot_missing_value(data)
eda.plot_features(data)
eda.plot_features_target(data, target)
eda.plot_corr(data.corr())
metrics.get_feature_importance(data, target)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
analysis_tools-0.3.2.tar.gz
(15.0 kB
view hashes)
Built Distribution
Close
Hashes for analysis_tools-0.3.2-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0cc8911a1005af2d26a95f214dc676c47aff2f4e9abfc94402234fc7106a0640 |
|
MD5 | 453892fa12043d15a20e610f4f7e5cc5 |
|
BLAKE2b-256 | 3f43a33aea79519f784fc3fed2b782aad574204ab07cb1128f39b087cafad919 |