Skip to main content

Manage Adobe Analytics Reports API v2 requests to build reports programmatically.

Project description

Adobe Analytics Python package

Download Reports data utilising the Adobe.io version 2.0 API.

For more Digital Analytics related reading, check https://analyticsmayhem.com

Requirements

Adobe.io access

In order to run the package, first you need to gain access to a service account from Adobe.io. The method used is JWT authentication. More instructions on how to create the integration at: https://www.adobe.io/authentication/auth-methods.html#!AdobeDocs/adobeio-auth/master/JWT/JWT.md. After you have completed the integration, you will need to have available the following information:

  • Organization ID (issuer): It is in the format of < organisation id >@AdobeOrg
  • Technical Account ID: < tech account id >@techacct.adobe.com
  • Client ID: Information is available on the completion of the Service Account integration
  • Client Secret: Information is available on the completion of the Service Account integration
  • Account ID: Instructions on how to obtain it at https://youtu.be/lrg1MuVi0Fo?t=96
  • Report suite: Report suite ID from which you want to download the data.

Make sure that the integration is associated with an Adobe Analytics product profile that is granted access to the necessary metrics and dimensions.

Package installation

pip install analytics-mayhem-adobe

Samples

Initial setup

After you have configured the integration and downloaded the package, the following setup is needed:

from analytics.mayhem.adobe import analytics_client

adobe_org_id = '<adobe org id>@AdobeOrg'
subject_account = '<technical account id>@techacct.adobe.com'
client_id = '<client id>'
client_secret = '<client secret>'
private_key_location = '.ssh/adobe-auth/private.key'
account_id = '<account id>'
report_suite_id = '<report suite>'

Next initialise the Adobe client:

aa = analytics_client( \
    adobe_org_id = adobe_org_id, \
    subject_account = subject_account, \
    client_id = client_id, client_secret = client_secret, \
    account_id = account_id, \
    private_key_location = private_key_location)

Request with 3 metrics and 1 dimension

aa.set_report_suite(report_suite_id = report_suite_id)
aa.add_metric(metric_name= 'metrics/visits')
aa.add_metric(metric_name= 'metrics/orders')
aa.add_metric(metric_name= 'metrics/event1')
aa.add_dimension(dimension_name = 'variables/mobiledevicetype')
aa.set_date_range(date_start = '2019-12-01', date_end= '2019-12-31')
data = aa.get_report()

Output:

itemId_lvl_1 value_lvl_1 metrics/visits metrics/orders metrics/event1
0 Other 5000 3 100
1728229488 Tablet 200 45 30
2163986270 Mobile Phone 49 23 31
... ... ... ... ...

Request with 3 metrics and 2 dimensions

aa.set_report_suite(report_suite_id = report_suite_id)
aa.add_metric(metric_name= 'metrics/visits')
aa.add_metric(metric_name= 'metrics/orders')
aa.add_metric(metric_name= 'metrics/event1')
aa.add_dimension(dimension_name = 'variables/mobiledevicetype')
aa.add_dimension(dimension_name = 'variables/lasttouchchannel')
aa.set_date_range(date_start = '2019-12-01', date_end= '2019-12-31')
data = aa.get_report_multiple_breakdowns()

Output: Each item in level 1 (i.e. Tablet) is broken down by the dimension in level 2 (i.e. Last Touch Channel). The package downloads all possible combinations. In a similar fashion more dimensions can be added.

itemId_lvl_1 value_lvl_1 itemId_lvl_2 value_lvl_2 metrics/visits metrics/orders metrics/event1
0 Other 1 Paid Search 233 39 10
0 Other 2 Natural Search 424 12 412
0 Other 3 Display 840 41 31
... ... ... ... ... ... ...
1728229488 Tablet 1 Paid Search 80 12 41
1728229488 Tablet 2 Natural Search 50 41 21
... ... ... ... ... ... ...

Issues, Bugs and Suggestions:

https://github.com/konosp/adobe-analytics-reports-api-v2.0/issues

Known missing features:

  • No support for filtering
  • No support for segments
  • No support for custom sorting
  • Not much customisation on the private key location

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

analytics_mayhem_adobe-0.0.3.tar.gz (8.0 kB view details)

Uploaded Source

Built Distribution

analytics_mayhem_adobe-0.0.3-py3-none-any.whl (11.2 kB view details)

Uploaded Python 3

File details

Details for the file analytics_mayhem_adobe-0.0.3.tar.gz.

File metadata

  • Download URL: analytics_mayhem_adobe-0.0.3.tar.gz
  • Upload date:
  • Size: 8.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.4

File hashes

Hashes for analytics_mayhem_adobe-0.0.3.tar.gz
Algorithm Hash digest
SHA256 c0dc9ea153d2a80c7afbcc3f17f6680ece70d2600c166ad9055fea2695129b41
MD5 1203c27e6fb359db82637141805d49b6
BLAKE2b-256 cee83411f99a5b00af6cd7a040a929b57db1e9e44512f40d41313c92e96b0bd1

See more details on using hashes here.

File details

Details for the file analytics_mayhem_adobe-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: analytics_mayhem_adobe-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 11.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.4

File hashes

Hashes for analytics_mayhem_adobe-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 daf37e226412dc2a846cfd459431ce9dce1859551465c80b9f4312a6409c1781
MD5 0f767369ad84ba86c270d83766140d1f
BLAKE2b-256 f97fba8c7cb5790c168cc363840f7456557212a70b51f0a2b9fbe5f119ee21da

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page