Skip to main content

Library for efficiently adding analytics to your project.

Project description

py-analytics
============
Py-Analytics is a library designed to make it easy to provide analytics as part of any project.

The project's goal is to make it easy to store and retrieve analytics data. It does not provide
any means to visualize this data.

Currently, only ``Redis`` is supported for storing data.

Requirements
------------

Required
~~~~~~~~

Requirements **should** be handled by setuptools, but if they are not, you will need the following Python packages:

* nydus
* redis
* dateutil

Optional
~~~~~~~~
* hiredis

analytics.create_analytic_backend
----------------------------------

Creates an analytics object that allows to to store and retrieve metrics::

>>> from analytics import create_analytic_backend
>>>
>>> analytics = create_analytic_backend({
>>> 'backend': 'analytics.backends.redis.Redis',
>>> 'settings': {
>>> 'defaults': {
>>> 'host': 'localhost',
>>> 'port': 6379,
>>> 'db': 0,
>>> },
>>> 'hosts': [{'db': 0}, {'db': 1}, {'host': 'redis.example.org'}]
>>> },
>>> })

Internally, the ``Redis`` analytics backend uses ``nydus`` to distribute your metrics data over your cluster of redis instances.

There are two required arguements:

* ``backend``: full path to the backend class, which should extend analytics.backends.base.BaseAnalyticsBackend

* ``settings``: settings required to initialize the backend. For the ``Redis`` backend, this is a list of hosts
in your redis cluster.

Example Usage
-------------

::

from analytics import create_analytic_backend
import datetime

analytics = create_analytic_backend({
"backend": "analytics.backends.redis.Redis",
"settings": {
"hosts": [{"db": 5}]
},
})

#create some analytics data
analytics.track_metric("user:1234", "comment", datetime.date.today())
analytics.track_metric("user:1234", "comment", datetime.date.today(), inc_amt=3)

#retrieve analytics data:
analytics.get_metric_by_day("user:1234", "comment", datetime.date.today(), limit=20)
analytics.get_metric_by_week("user:1234", "comment", datetime.date.today(), limit=10)
analytics.get_metric_by_month("user:1234", "comment", datetime.date.today(), limit=6)

#create a counter
analytics.track_count("user:1245", "login")
analytics.track_count("user:1245", "login", inc_amt=3)

#retrieve a count
analytics.get_count("user:1245", "login")


TODO
----

* Add more backends (MySQL, Postgres, ...)
* Add an API so it can be deployed as a stand alone service

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

analytics-0.2.1.tar.gz (7.8 kB view details)

Uploaded Source

File details

Details for the file analytics-0.2.1.tar.gz.

File metadata

  • Download URL: analytics-0.2.1.tar.gz
  • Upload date:
  • Size: 7.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for analytics-0.2.1.tar.gz
Algorithm Hash digest
SHA256 0dbc11227395cbd5381d71d94ccd1b47d86a7bbe71c4e9d3017aa4d29b11edc9
MD5 16e1e9982ff9ce2bedf3aad003cb22f1
BLAKE2b-256 16e3360c36b7eb35013628c66c339b6dd42fdb7bfc2095230e3d8210ae280f78

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page