Skip to main content

Library for efficiently adding analytics to your project.

Project description

Py-Analytics is a library designed to make it easy to provide analytics as part of any project.

The project’s goal is to make it easy to store and retrieve analytics data. It does not provide any means to visualize this data.

Currently, only Redis is supported for storing data.

Requirements

Required

Requirements should be handled by setuptools, but if they are not, you will need the following Python packages:

  • nydus

  • redis

  • dateutil

Optional

  • hiredis

analytics.create_analytic_backend

Creates an analytics object that allows to to store and retrieve metrics:

>>> from analytics import create_analytic_backend
>>>
>>> analytics = create_analytic_backend({
>>>     'backend': 'analytics.backends.redis.Redis',
>>>     'settings': {
>>>         'defaults': {
>>>             'host': 'localhost',
>>>             'port': 6379,
>>>             'db': 0,
>>>         },
>>>         'hosts': [{'db': 0}, {'db': 1}, {'host': 'redis.example.org'}]
>>>     },
>>> })

Internally, the Redis analytics backend uses nydus to distribute your metrics data over your cluster of redis instances.

There are two required arguements:

  • backend: full path to the backend class, which should extend analytics.backends.base.BaseAnalyticsBackend

  • settings: settings required to initialize the backend. For the Redis backend, this is a list of hosts in your redis cluster.

Example Usage

from analytics import create_analytic_backend
import datetime

analytics = create_analytic_backend({
    "backend": "analytics.backends.redis.Redis",
    "settings": {
        "hosts": [{"db": 5}]
    },
})

year_ago = datetime.date.today() - datetime.timedelta(days=265)

#create some analytics data
analytics.track_metric("user:1234", "comment", year_ago)
analytics.track_metric("user:1234", "comment", year_ago, inc_amt=3)

#retrieve analytics data:
analytics.get_metric_by_day("user:1234", "comment", year_ago, limit=20)
analytics.get_metric_by_week("user:1234", "comment", year_ago, limit=10)
analytics.get_metric_by_month("user:1234", "comment", year_ago, limit=6)

#create a counter
analytics.track_count("user:1245", "login")
analytics.track_count("user:1245", "login", inc_amt=3)

#retrieve multiple metrics at the same time
#group_by is one of ``month``, ``week`` or ``day``
analytics.get_metrics([("user:1234", "login",), ("user:4567", "login",)], year_ago, group_by="day")
>> [....]

#retrieve a count
analytics.get_count("user:1245", "login")

#retrieve counts
analytics.get_counts([("user:1245", "login",), ("user:1245", "logout",)])

TODO

  • Add more backends (riak, …)?

  • Add an API so it can be deployed as a stand alone service (http, protocolbuffers, …)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

analytics-0.3.2.tar.gz (13.5 kB view details)

Uploaded Source

File details

Details for the file analytics-0.3.2.tar.gz.

File metadata

  • Download URL: analytics-0.3.2.tar.gz
  • Upload date:
  • Size: 13.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for analytics-0.3.2.tar.gz
Algorithm Hash digest
SHA256 18a266a1885e72b8ca917676765347ca1c212b77b5c8392eb95e65ed2e7c9d00
MD5 9cf2c6b7b6066180b0b56823274fa68f
BLAKE2b-256 63fdb1126e9f4542d8aa5705e793d6b3dee46322443ab8ba59c7d9cfc1069e3a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page