Skip to main content

Python extras to support the analyzere package

Project description

An extension to the analyzere python library that facilitates “extras” including visualizations of Analyze Re LayerView objects.

Installation

pip install analyzerePythonTools

Graphing Options

This graphing utility provides some methods of controlling the style and format of the rendered image.

rankdir=’XX’

Option that controls the orientation of the graph. Options include:

  • ‘BT’ bottom to top (default)

  • ‘TB’ top to bottom

  • ‘LR’ left to right

  • ‘RL’ right to left

compact=True|False

Controls if duplicate nodes should be omitted (default=True). This option tends to produce smaller graphs, which should be easier to read.

with_terms=True|False

Specify that a Layer’s terms are included in each node of the graph (default=True).

warnings=True|False

Highlight nodes with suspicious terms by coloring the node red. Warning nodes are generated when any of the following conditions are true:

  • participation = 0.0

  • invert = true and filters = []

  • attachment or aggregate_attachment = unlimited

max_depth=0

The maximum depth of the graph to process. For very deeply nested structures this can reduce the size. (default=0 == all levels).

max_sources=0

The maximum number of Loss sources to graph in detail for a single node. (default=0 == all sources).

colors=[1-12]

The number of colors to be used when coloring nodes and edges. (default=1 == black, max=12).

color_mode=[‘breadth’|’depth’]

The mode to use when applying colors. Options include: [‘breadth’, ‘depth’], default: ‘breadth’.

Sample LayerView Images:

LayerViewDigraph(lv, ...)

render(...)

compact=

with_terms=

warnings=

rankdir='BT'

rankdir='LR'

True

True

True

BT_compact_with-terms_warnings-enabled

LR_compact_with-terms_warnings-enabled

True

True

False

BT_compact_with-terms_warnings-disabled

LR_compact_with-terms_warnings-disabled

True

False

True

BT_compact_without-terms_warnings-enabled

LR_compact_without-terms_warnings-enabled

False

False

False

BT_not-compact_without-terms_warnings-disabled

LR_not-compact_without-terms_warnings-disabled

Colorization:

LayerViewDigraph(lv, ...)

render(...)

compact=

colors=

color_mode=

rankdir='BT'

True

4

breadth

BT_compact_with-terms_warnings-disabled_4-colors-by-breadth

True

4

depth

BT_compact_with-terms_warnings-disabled_4-colors-by-depth

False

4

breadth

BT_not-compact_with-terms_warnings-disabled_4-colors-by-breadth

False

4

depth

BT_not-compact_with-terms_warnings-disabled_4-colors-by-depth

Usage

In order to make use of the tools in the analyzere-tool-extra module you will need to import the analyzere module.

You will need to define your connection information:

import analyzere
analyzere.base_url = '<your server url>'
analyzere.username = '<your userid>'
analyzere.password = '<your password>'

Visualization

To make use of the visualization tool, you will need to query a LayerView that you would like to graph:

from analyzere import LayerView

lv = analyzere.LayerView.retrieve('011785b1-203b-696e-424e-7da9b0ec779a')

Now you can generate a graph of your LayerView:

from analyzere-tool-extra.visualizations import LayerViewDigraph

g = LayerViewDigraph(lv)  # defaults: with_terms=True, compact=True, rankdir='TB', warnings=True
g = LayerViewDigraph(lv, with_terms=False)  # omit Layer terms from nodes
g = LayerViewDigraph(lv, compact=False) # graph duplicate nodes
g = LayerViewDigraph(lv, rankdir='LR')  # render the graph from Left to Right
g = LayerViewDigraph(lv, warnings=False)  # disable error node highlighting

Then to render your graph:

g.render()  # defaults: filename=None, view=True, format=None, rankdir=None
g.render(filename='mygraph') # write graph to 'mygraph'
g.render(view=True)     # attempt to auto display the graph
g.render(format='pdf')  # change the output format 'pdf'
g.render(rankdir='LR')  # render the graph from Left to Right

Shortcut: generate a graph for a given LayerView Id:

graph = LayerViewDigraph.from_id('011785b1-203b-696e-424e-7da9b0ec779a')

ELT Combination

To make use of the ELT combiner tool, you will need to define the list of uuids representing the resources with ELTs that you would like to combine:

uuid_list = ['26a8f73b-0fbb-46c7-8dcf-f4de1e222994', 'cd67ba03-302b-45e5-9341-a4267875c1f8']

You will need to indicate which catalog these ELTs correspond to:

catalog_uuid = '61378251-ce85-4b6e-a63c-f5d67c4e4877'

Then to combine the ELTs into a single ELT:

from analyzerePythonTools.combine_elts import ELTCombiner

elt_combiner = ELTCombiner()

combined_elt = elt_combiner.combine_elts_from_resources(
  uuid_list,
  catalog_uuid,
  uuid_type='all',
  description='My Combined ELT'
)

uuid_type specifies which the type of resources in uuid_list. Valid values for uuid_type are:

  • 'Portfolio'

  • 'PortfolioView'

  • 'Layer'

  • 'LayerView'

  • 'LossSet'

  • 'all'

If uuid_type='all' is set, then the resources in uuid_list can be a mix of Portfolios, PortfolioViews, Layers, LayerViews, and LossSets. The default value of uuid_type is 'all'.

description defines the description for the uploaded combined ELT. If not set, the default is 'analyzerePythonTools: Combined ELT'.

Testing

We currently commit to being compatible with Python 2.7 and Python 3.4 to 3.7. In order to run tests against against each environment we use tox and py.test. You’ll need an interpreter installed for each of the versions of Python we test. You can find these via your system’s package manager or on the Python site.

To start, install tox:

pip install tox

Then, run the full test suite:

tox

To run tests for a specific module, test case, or single test, you can pass arguments to py.test through tox with --. E.g.:

tox -- tests/test_base_resources.py::TestReferences::test_known_resource

See tox --help and py.test --help for more information.

Publishing

  1. Install twine and wheel:

    pip install twine wheel
  2. Increment version number in setup.py according to PEP 440.

  3. Commit your change to setup.py and create a tag for it with the version number. e.g.:

    git tag 0.1.0
    git push origin 0.1.0
  4. Package source and wheel distributions:

    python setup.py sdist bdist_wheel
  5. Upload to PyPI with twine:

    twine upload dist/*

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

analyzerePythonTools-0.1.5.tar.gz (16.7 kB view details)

Uploaded Source

Built Distribution

analyzerePythonTools-0.1.5-py2.py3-none-any.whl (29.6 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file analyzerePythonTools-0.1.5.tar.gz.

File metadata

  • Download URL: analyzerePythonTools-0.1.5.tar.gz
  • Upload date:
  • Size: 16.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.14

File hashes

Hashes for analyzerePythonTools-0.1.5.tar.gz
Algorithm Hash digest
SHA256 35f8e735ca9949b28f838b781761da6ea1188074e79fda0da8cad2cb35728ba0
MD5 e9f0f41644da0d9f57b2faa40dc9b3a1
BLAKE2b-256 36609bfbd1b6787288967e0eca4bf34d8a2fc69e27db5a6789084207e20322fd

See more details on using hashes here.

File details

Details for the file analyzerePythonTools-0.1.5-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for analyzerePythonTools-0.1.5-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 4866997ae993ef10e25b124f137a738a44561f5f5059dc446cb07e1614f8750e
MD5 2bb8f01e5e182a895e574cfdc5b2b148
BLAKE2b-256 f4129603d7d4f7ffd341efd055f37abb1e5b4f4b3e0bc019193bb699372753ac

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page