My hy toolbox
Project description
My toolbox for dynamic programming
#to be documented #Chapter: tf-idf
from anarcute import *
import requests, json
sentence=”Eat more of those french fries and drink cola”
alice=requests.get(”https://gist.githubusercontent.com/phillipj/4944029/raw/75ba2243dd5ec2875f629bf5d79f6c1e4b5a8b46/alice_in_wonderland.txt”).text
print(tf_idf(sentence,alice))
>> {‘eat’: 168.7962962962963, ‘more’: 62.006802721088434, ‘of’: 5.9111543450064845, ‘those’: 303.8333333333333, ‘french’: 759.5833333333333, ‘and’: 3.4843272171253816, ‘drink’: 434.047619047619}
#If text is too big it’s frequencies can be pre-cached.
filename=”alice.json”
vector=vectorize(alice)
open(filename,”w+”).write(json.dumps(vector))
vector=json.load(open(filename,”r+”))
print(tf_idf(sentence,vector))
>>{‘eat’: 168.7962962962902, ‘more’: 62.00680272108618, ‘of’: 5.91115434500627, ‘those’: 303.8333333333223, ‘french’: 759.5833333333056, ‘and’: 3.484327217125255, ‘drink’: 434.0476190476033}
#we can sort by value
print(sort_by_value(tf_idf(sentence,vector)))
>>{‘french’: 759.5833333332979, ‘drink’: 434.04761904759886, ‘those’: 303.8333333333192, ‘eat’: 168.7962962962885, ‘more’: 62.006802721085556, ‘of’: 5.911154345006209, ‘and’: 3.4843272171252204}
#Chapter: Google
#We have Google Translate and Google Custom Search Engine now
key=”MY_GOOGLE_KEY”
gt=GT(key)
gt.translate(“pl”,”en”,”Jeszcze Polska nie zginęła, Kiedy my żyjemy. Co nam obca przemoc wzięła, Szablą odbierzemy.”)
>> {‘data’: {‘translations’: [{‘translatedText’: ‘Poland is not dead yet, When we live. What foreign violence has taken from us, we will take away the Saber.’}]}}
cx=”MY_CUSTOM_SEARCH_ENGINE_KEY”
gs=GS(cx,key)
gs.search(“krakauer sausage recipe”)
>> dict with search result, up to 10 items
gs.items(“krakauer sausage recipe””)
>> array of results, up to 100 items
#Chapter: Multithreading
#based on multithreading_on_dill library
#let’s reverse every string of Alice in Wonderland
alice=requests.get(url).text
alice_reversed=mapp(lambda s: str(s[::-1]),alice.split(’n’))
#as you see we have no problem with lambda
#by default the number of processes equals to cpu number, but you can make it bigger for highly async tasks or smaller to prevent overload
alice_reversed=mapp(lambda s: str(s[::-1]),alice.split(’n’),processes=2)
#decorator @timeit also included in the library
@timeit
def test(p=None):
r=mapp(lambda s: math.factorial(150*len(s)),alice.split(’n’),processes=p)
return None
test()
>> ‘test’ 2563.11 ms
test(1)
>> ‘test’ 5287.27 ms
#multithreading filter
alice_special=filterp(lambda s: “alice” in s.lower(),alice.split(’n’))
#run one async function
run(print,[“A B C”])
#you can wait for it’s result when you need to catch up
p=run(lambda x: request.get(x).text,url)
some_other_stuff()
p.join()
#apply - function that executes functions. Used to run few different functions in one multithreading process
r=mapp(apply,[lambda:requests.get(“https://gist.githubusercontent.com/phillipj/4944029/raw/75ba2243dd5ec2875f629bf5d79f6c1e4b5a8b46/alice_in_wonderland.txt”).text,lambda: math.factorial(9000)])
#Chapter predicates
#in_or(a,b) - returns if at least one element of array is in array/string b
a=[“Some”,”important”,”array”]
b=[“Another”,”array”]
in_or(a,b)
>> True
c=[“Something”, “Else”]
in_or(a,c)
>> False
d=”Some string”
in_or(a,d)
>> True
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file anarcute-0.1.996.4.tar.gz
.
File metadata
- Download URL: anarcute-0.1.996.4.tar.gz
- Upload date:
- Size: 9.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.35.0 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 61a74677540c9f37bae050f9645325ebbe36de0b46ff932f4a5ae5544d3b3df4 |
|
MD5 | f5de501bb6e775f020949d83d656becb |
|
BLAKE2b-256 | 474f849560fd90465b0adeb65d490ffe7e18ad06ffa0e3f6e85306628080f7fb |