Skip to main content

My hy toolbox

Project description

My toolbox for dynamic programming

#to be documented #Chapter: tf-idf

from anarcute import *

import requests, json

sentence=”Eat more of those french fries and drink cola”

alice=requests.get(”https://gist.githubusercontent.com/phillipj/4944029/raw/75ba2243dd5ec2875f629bf5d79f6c1e4b5a8b46/alice_in_wonderland.txt”).text

print(tf_idf(sentence,alice))

>> {‘eat’: 168.7962962962963, ‘more’: 62.006802721088434, ‘of’: 5.9111543450064845, ‘those’: 303.8333333333333, ‘french’: 759.5833333333333, ‘and’: 3.4843272171253816, ‘drink’: 434.047619047619}

#If text is too big it’s frequencies can be pre-cached.

filename=”alice.json”

vector=vectorize(alice)

open(filename,”w+”).write(json.dumps(vector))

vector=json.load(open(filename,”r+”))

print(tf_idf(sentence,vector))

>>{‘eat’: 168.7962962962902, ‘more’: 62.00680272108618, ‘of’: 5.91115434500627, ‘those’: 303.8333333333223, ‘french’: 759.5833333333056, ‘and’: 3.484327217125255, ‘drink’: 434.0476190476033}

#we can sort by value

print(sort_by_value(tf_idf(sentence,vector)))

>>{‘french’: 759.5833333332979, ‘drink’: 434.04761904759886, ‘those’: 303.8333333333192, ‘eat’: 168.7962962962885, ‘more’: 62.006802721085556, ‘of’: 5.911154345006209, ‘and’: 3.4843272171252204}

#Chapter: Google

#We have Google Translate and Google Custom Search Engine now

key=”MY_GOOGLE_KEY”

gt=GT(key)

gt.translate(“pl”,”en”,”Jeszcze Polska nie zginęła, Kiedy my żyjemy. Co nam obca przemoc wzięła, Szablą odbierzemy.”)

>> {‘data’: {‘translations’: [{‘translatedText’: ‘Poland is not dead yet, When we live. What foreign violence has taken from us, we will take away the Saber.’}]}}

cx=”MY_CUSTOM_SEARCH_ENGINE_KEY”

gs=GS(cx,key)

gs.search(“krakauer sausage recipe”)

>> dict with search result, up to 10 items

gs.items(“krakauer sausage recipe””)

>> array of results, up to 100 items

#Chapter: Multithreading

#based on multithreading_on_dill library

#let’s reverse every string of Alice in Wonderland

url=”https://gist.githubusercontent.com/phillipj/4944029/raw/75ba2243dd5ec2875f629bf5d79f6c1e4b5a8b46/alice_in_wonderland.txt

alice=requests.get(url).text

alice_reversed=mapp(lambda s: str(s[::-1]),alice.split(’n’))

#as you see we have no problem with lambda

#by default the number of processes equals to cpu number, but you can make it bigger for highly async tasks or smaller to prevent overload

alice_reversed=mapp(lambda s: str(s[::-1]),alice.split(’n’),processes=2)

#decorator @timeit also included in the library

@timeit

def test(p=None):

r=mapp(lambda s: math.factorial(150*len(s)),alice.split(’n’),processes=p)

return None

test()

>> ‘test’ 2563.11 ms

test(1)

>> ‘test’ 5287.27 ms

#multithreading filter

alice_special=filterp(lambda s: “alice” in s.lower(),alice.split(’n’))

#run one async function

run(print,[“A B C”])

#you can wait for it’s result when you need to catch up

p=run(lambda x: request.get(x).text,url)

some_other_stuff()

p.join()

#apply - function that executes functions. Used to run few different functions in one multithreading process

r=mapp(apply,[lambda:requests.get(“https://gist.githubusercontent.com/phillipj/4944029/raw/75ba2243dd5ec2875f629bf5d79f6c1e4b5a8b46/alice_in_wonderland.txt”).text,lambda: math.factorial(9000)])

#Chapter predicates

#in_or(a,b) - returns if at least one element of array is in array/string b

a=[“Some”,”important”,”array”]

b=[“Another”,”array”]

in_or(a,b)

>> True

c=[“Something”, “Else”]

in_or(a,c)

>> False

d=”Some string”

in_or(a,d)

>> True

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

anarcute-0.1.996.4.tar.gz (9.0 kB view details)

Uploaded Source

File details

Details for the file anarcute-0.1.996.4.tar.gz.

File metadata

  • Download URL: anarcute-0.1.996.4.tar.gz
  • Upload date:
  • Size: 9.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.35.0 CPython/3.7.3

File hashes

Hashes for anarcute-0.1.996.4.tar.gz
Algorithm Hash digest
SHA256 61a74677540c9f37bae050f9645325ebbe36de0b46ff932f4a5ae5544d3b3df4
MD5 f5de501bb6e775f020949d83d656becb
BLAKE2b-256 474f849560fd90465b0adeb65d490ffe7e18ad06ffa0e3f6e85306628080f7fb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page