Skip to main content
Help us improve Python packaging – donate today!

Anchor is a python package to estimate modality of splicing, percent methylated, any data that is normalized between 0 and 1

Project Description

![Anchor logo](https://raw.githubusercontent.com/YeoLab/anchor/master/logo/v1/logo.png)

[![](https://img.shields.io/travis/YeoLab/anchor.svg)](https://travis-ci.org/YeoLab/anchor)[![](https://img.shields.io/pypi/v/anchor.svg)](https://pypi.python.org/pypi/anchor)[![codecov](https://codecov.io/gh/YeoLab/anchor/branch/master/graph/badge.svg)](https://codecov.io/gh/YeoLab/anchor)

## What is `anchor`?

Anchor is a python package to find unimodal, bimodal, and multimodal features in any data that is normalized between 0 and 1, for example alternative splicing or other percent-based units.

* Free software: BSD license
* Documentation: https://YeoLab.github.io/anchor

## Installation

To install `anchor`, we recommend using the
[Anaconda Python Distribution](http://anaconda.org/) and creating an
environment, so the `anchor` code and dependencies don't interfere with
anything else. Here is the command to create an environment:


```
conda create -n anchor-env pandas scipy numpy matplotlib seaborn
```

### Stable (recommended)


To install this code from the Python Package Index, you'll need to specify ``anchor-bio`` (``anchor`` was already taken - boo).

```
pip install anchor-bio
```

### Bleeding-edge (for the brave)

If you want the latest and greatest version, clone this github repository and use `pip` to install

```
git clone git@github.com:YeoLab/anchor
cd anchor
pip install . # The "." means "install *this*, the folder where I am now"
```


## Usage

`anchor` was structured like `scikit-learn`, where if you want the "final
answer" of your estimator, you use `fit_transform()`, but if you want to see the
intermediates, you use `fit()`.

If you want the modality assignments for your data, first make sure that you
have a `pandas.DataFrame`, here it is called `data`, in the format (samples,
features). This uses a log2 Bayes Factor cutoff of 5, and the default Beta
distribution parameterizations (shown [here]())

```python
import anchor

bm = anchor.BayesianModalities()
modalities = bm.fit_transform(data)
```

If you want to see all the intermediate Bayes factors, then you can do:

```python
import anchor

bm = anchor.BayesianModalities()
bayes_factors = bm.fit(data)
```


## History

### 1.1.1 (2017-06-29)

- In `infotheory.binify`, round the decimal numbers before they are written as strings

### 1.0.1 (2017-06-28)

- Documentation and build fixes

### 1.0.0 (2017-06-28)

* Updated to Python 3.5, 3.6

### 0.1.0 (2015-07-08)

* First release on PyPI.

Release history Release notifications

This version
History Node

1.1.1

History Node

1.0.1

History Node

1.0.0

History Node

0.1.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
anchor-bio-1.1.1.tar.gz (17.6 kB) Copy SHA256 hash SHA256 Source None Jun 29, 2017

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging CloudAMQP CloudAMQP RabbitMQ AWS AWS Cloud computing Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page