Skip to main content

A set of AI tools for working with Cognite Data Fusion in Python.

Project description

cognite-ai

A set of AI tools for working with CDF in Python.

MemoryVectorStore

Store and query vector embeddings created from CDF. This can enable a bunch of use cases where the number of vectors aren't that big.

Install the package

%pip install cognite-ai

Then you can create vectors from text (both multiple lines or a list of strings) like this


from cognite.ai import MemoryVectorStore
from cognite.client import CogniteClient

client = CogniteClient()
vector_store = MemoryVectorStore(client)

vector_store.store_text("Hi, I am a software engineer working for Cognite.")
vector_store.store_text("The moon is orbiting the earth, which is orbiting the sun.")
vector_store.store_text("Coffee can be a great way to stay awake.")

vector_store.query_text("I am tired, what can I do?")

Smart data frames

Chat with your data using LLMs. Built on top of PandasAI version 2.2.15. If you have loaded data into a Pandas dataframe, you can run

Install the package

%pip install cognite-ai

Chat with your data

from cognite.client import CogniteClient
from cognite.ai import load_pandasai

client = CogniteClient()
SmartDataframe, SmartDatalake, Agent = await load_pandasai()

workorders_df = client.raw.rows.retrieve_dataframe("tutorial_apm", "workorders", limit=-1)
workitems_df = client.raw.rows.retrieve_dataframe("tutorial_apm", "workitems", limit=-1)
workorder2items_df = client.raw.rows.retrieve_dataframe("tutorial_apm", "workorder2items", limit=-1)
workorder2assets_df = client.raw.rows.retrieve_dataframe("tutorial_apm", "workorder2assets", limit=-1)
assets_df = client.raw.rows.retrieve_dataframe("tutorial_apm", "assets", limit=-1)

smart_lake_df = SmartDatalake([workorders_df, workitems_df, assets_df, workorder2items_df, workorder2assets_df], cognite_client=client)
smart_lake_df.chat("Which workorders are the longest, and what work items do they have?")


s_workorders_df = SmartDataframe(workorders_df, cognite_client=client)
s_workorders_df.chat('Which 5 work orders are the longest?')

Configure LLM parameters

params = {
    "model": "gpt-35-turbo",
    "temperature": 0.5
}

s_workorders_df = SmartDataframe(workorders_df, cognite_client=client, params=params)

Pandas AI agent

We can also

from cognite.client import CogniteClient
from cognite.ai import load_pandasai

client = CogniteClient()
SmartDataframe, SmartDatalake, Agent = await load_pandasai()

# Create example data
sales_by_country_df = pd.DataFrame({
    "country": ["United States", "United Kingdom", "France", "Germany", "Italy", "Spain", "Canada", "Australia", "Japan", "China"],
    "revenue": [5000, 3200, 2900, 4100, 2300, 2100, 2500, 2600, 4500, 7000]
})

agent = Agent(sales_by_country_df, cognite_client=client)

print(agent.chat("Which are the top 5 countries by sales?"))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

andeplane_ai-0.5.2.tar.gz (6.7 kB view details)

Uploaded Source

Built Distribution

andeplane_ai-0.5.2-py3-none-any.whl (8.3 kB view details)

Uploaded Python 3

File details

Details for the file andeplane_ai-0.5.2.tar.gz.

File metadata

  • Download URL: andeplane_ai-0.5.2.tar.gz
  • Upload date:
  • Size: 6.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.10

File hashes

Hashes for andeplane_ai-0.5.2.tar.gz
Algorithm Hash digest
SHA256 ea2b18950e49c39b0cdb4a18ead64122e608d59ad5ac6dfe69c982b6587bace8
MD5 942a9e9fe3c652a586cbf7cea7b70081
BLAKE2b-256 ed61826e55770cc325735473ea760cf938c2976a4b4ce623bcb853de5b97a8f1

See more details on using hashes here.

File details

Details for the file andeplane_ai-0.5.2-py3-none-any.whl.

File metadata

File hashes

Hashes for andeplane_ai-0.5.2-py3-none-any.whl
Algorithm Hash digest
SHA256 6ab51bedde26197800d264062fed8209ac41ddc106fe10fc10c544b4ea860825
MD5 4562fef7160be7e36d06234ed4c19497
BLAKE2b-256 ad577ee891cf57b6baa6ae7b8613e0fda19a9f150b7b46aa2ef7d8c7bfb7d4fa

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page